本文在不确定退出时间和随机市场环境下利用拉格朗日对偶方法研究了多阶段均值-方差投资组合选择问题. 我们假定市场上的资产全是风险资产,且随机市场环境只有有限个自然状态,自然状态的转移过程为时变马尔可夫链,各阶段资产的随机收益率不仅与时间有关而且与市场所处的状态有关. 首先利用动态规划技术和拉格朗日对偶方法得到了模型的有效投资策略及有效边界的显式表达式. 然后,还给出并证明了一个多阶段版本的两基金分离定理,最后,为说明本文的结论及应用,给出了一个数值算例.
Abstract
Using Lagrange duality method, this paper investigates a multi-period mean-variance portfolio selection problem under uncertain exit time and stochastic market environment. We assume that all the assets in the market are risky, and there are only a finite number of states in the market and the state transition process follows a time varying Markov chain, and the random returns of the assets over every period not only depend on the time but also depend on the market state. Firstly, by using the dynamic programming technique and the Lagrange duality method, we obtain the explicit expressions for the efficient investment strategy and the efficient frontier. Then, we provide and prove a multi-period version of two fund separation theorem. Finally, a numerical example is presented to illustrate the results obtained in this paper.
关键词
不确定退出时间 /
随机市场环境 /
拉格朗日对偶方法 /
两基金分离定理 /
有效边界
{{custom_keyword}} /
Key words
uncertain exit time /
stochastic market environment /
Lagrange duality method /
two fund separation theorem /
efficient frontier
{{custom_keyword}} /
中图分类号:
F830.59
F224
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Markowitz H. Portfolio selection[J]. Journal of Finance, 1952, 7(1): 77-91.
[2] Li D, Ng W L. Optimal dynamic portfolio selection: Multiperiod mean-variance formulation[J]. Mathematical Finance, 2000, 10: 387-406.
[3] Zhou X Y, Li D. Continuous-time mean-variance portfolio selection: A stochastic LQ framework[J]. Applied Mathematics Optimization, 2000, 42: 19-33.
[4] Yao H X, Lai Y Z, Li Y. Continuous-time mean-variance asset-liability management with endogenous liabilities[J]. Insurance: Mathematics and Economics, 2013, 52: 6-17.
[5] Cui X Y, Gao J J, Li X, et al. Optimal multi-period mean-variance policy under no-shorting constraint[J]. European Journal of Operational Research, 2013, http://dx.doi.org/10.1016/j.ejor.2013.02.040.
[6] 许云辉,李仲飞. 基于收益序列相关的动态投资组合选择——动态均值-方差模型[J]. 系统工程理论与实践, 2008, 28(8): 123-131. Xu Yunhui, Li Zhongfei. Dynamic portfolio selection based on serially correlated return: Dynamic mean-variance formulation[J]. Systems Engineering——Theory & Practice, 2008, 28(8): 123-131.
[7] 张初兵, 荣喜民. 均值-方差模型下DC型养老金的随机最优控制[J]. 系统工程理论与实践, 2012, 32(6): 1314-1323. Zhang Chubing, Rong Ximin. Stochastic optimal control for DC pension under the mean-variance model[J]. Systems Engineering——Theory & Practice, 2012, 32(6): 1314-1323.
[8] Martellini L, Urosevic B. Static mean-variance analysis with uncertain time horizon[J]. Management Science, 2006, 52: 955-964.
[9] 郭文旌, 胡奇英. 不确定终止时间的多阶段最优投资组合[J]. 管理科学学报, 2005, 8(2): 13-19. Guo Wenjing, Hu Qiying. Multi-period optimization when exit time is uncertain[J]. Journal of Management Sciences in China, 2005, 8(2): 13-19.
[10] Yi L, Li Z F, Li D. Mutli-period portfolio selection for asset-liability management with uncertain investment horizon[J]. Journal of Industrial and Management Optimization, 2008, 4(3): 535-552.
[11] Yao H X, Zeng Y, Chen S M. Multi-period mean-variance asset-liability management with uncontrolled cash flow and uncertain time-horizon[J]. Economic Modelling, 2013, 30: 492-500.
[12] Li Z F, Xie S X. Mean-variance portfolio optimization under stochastic income and uncertain exit time[J]. Dynamics of Continuous, Discrete and Impulsive Systems B: Applications and Algorithms, 2010, 17: 131-147.
[13] Hardy M R. A regime-switching model of long-term stock returns[J]. North American Actuarial Journal, 2001, 5: 41-53.
[14] Çakmak U, Özekici S. Portfolio optimization in stochastic markets[J]. Mathematical Methods of Operations Research, 2006, 63: 151-168.
[15] Çelikyurt U, Özekici S. Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach[J]. European Journal of Operational Research, 2007, 179: 186-202.
[16] Wei S Z, Ye Z X. Multi-period optimization portfolio with bankruptcy control in stochastic market [J]. Applied Mathematics and Computation, 2007, 186: 414-425.
[17] Chen P, Yang H L. Markowitz's mean-variance asset-liability management with regime switching: A multi-period model[J]. Applied Mathematical Finance, 2011, 18: 29-50.
[18] Oswaldo L V C, Michael V A. A generalized multi-period mean-variance portfolio optimization with Markov switching parameters[J]. Automatica, 2008, 44: 2487-2497.
[19] Costa O L V, de Oliveira A D. Optimal mean-variance control for discrete-time linear systems with Markovian jumps and multiplicative noises[J]. Automatica, 2012, 48: 304-315.
[20] Zhou X Y, Yin G. Markowitz's mean-variance portfolio selection with regime switching: A continuous-time model[J]. SIAM Journal on Control and Optimization, 2003, 42: 1466-1482.
[21] Chen P, Yang H L, Yin G. Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model[J]. Insurance: Mathematics and Economics, 2008, 43: 456-465.
[22] Xie S X. Continuous-time mean-variance portfolio selection with liability and regime switching[J]. Insurance: Mathematics and Economics, 2009, 45: 148-155.
[23] Wu H L, Li Z F. Multi-period mean-variance-portfolio selection with Markov regime switching and uncertain time-horizon[J]. Journal of Systems Science and Complexity, 2011, 24: 140-155.
[24] Luenberger D G. Optimization by vector space methods[M]. Wiley, New York, 1968.
[25] Tobin J. Liquidity preference as behavior toward risk[J]. Review of Economic Studies, 1958, 67: 65-86.
[26] Sharpe W F. Capital asset prices: A theory of market equilibrium under conditions of risk[J]. Journal of Finance, 1964, 19(3): 425-442.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(71231008,71471045);广州市哲学社会科学规划项目(14G42);广东省高等院校(学科建设专项资金)科技创新项目(2012KJCX0050)
{{custom_fund}}