先行指标与宏观经济波动预测

花俊国

系统工程理论与实践 ›› 2014, Vol. 34 ›› Issue (10) : 2539-2545.

PDF(1025 KB)
PDF(1025 KB)
系统工程理论与实践 ›› 2014, Vol. 34 ›› Issue (10) : 2539-2545. DOI: 10.12011/1000-6788(2014)10-2539
论文

先行指标与宏观经济波动预测

    花俊国
作者信息 +

Leading indicators and macroeconomic fluctuation forecasting

    HUA Jun-guo
Author information +
文章历史 +

摘要

文中基于非参数协整检验, 建立了基于先行指标预测我国经济短期波动的平滑转换自回归模型,以考察不同先行指标对短期内宏观经济波动的预测能力. 结果显示: 经济合作与发展组织(OECD)先行指标对季节调整后实际产出水平的预测误差基本在1%以内, 国家统计局先行指标对国内生产总值(GDP)同比增长率的预测误差基本在5%以内. 对2011年第2季度后GDP增长的样本外预测结果表明, 两种先行指标的预测结果都与实际GDP增长率很接近, OECD指标的预测精度略优于国家统计局指标.

Abstract

Based on the nonparametric cointegration test, this paper develops the smooth transition autoregression (STAR) model to forecast the short-run macroeconomic fluctuations using the leading indicators. It is found that the prediction error of actual output levels provided by Organization for Economic Co-operation and Development (OECD)'s leading indicators after the seasonally adjusted is within 1%, and the prediction error of year-on-year growth rate of Gross Domestic Product (GDP) provided by National Bureau of Statics of China (NBSC) is less than 5%. Forecasting result of GDP growth in 2011 showed that the forecasting results of two leading indicators are very close to the real GDP growth rate, and leading indicator provided by OECD is prior to that provided by NBSC.

关键词

先行指标 / 经济波动 / 平滑转换自回归 / 非参数协整检验

Key words

leading indicator / macroeconomic fluctuations / smooth transition autoregression / nonparametric cointegration test

引用本文

导出引用
花俊国. 先行指标与宏观经济波动预测. 系统工程理论与实践, 2014, 34(10): 2539-2545 https://doi.org/10.12011/1000-6788(2014)10-2539
HUA Jun-guo. Leading indicators and macroeconomic fluctuation forecasting. Systems Engineering - Theory & Practice, 2014, 34(10): 2539-2545 https://doi.org/10.12011/1000-6788(2014)10-2539
中图分类号: F037.3   

参考文献

[1] Auerbach A. The index of leading indicators: "measurement without theory," thirty-five years later[J]. Review of Economics and Statistics, 1982, 69(4): 589-595.
[2] Diebold F, Rudebusch A. Forecasting output with the composite leading index: A real-time analysis[J]. Journal of the American Statistical Association, 1991, 86(415): 603-610.
[3] Diebold F, Rudebusch A. Measuring business cycles: A modern perspective[J]. Review of Economics and Statistics, 1995, 78(1): 67-77.
[4] Kim C, Murray C. Permanent and transitory components of recessions[J]. Empirical Economics, 2002, 27(2): 163-183.
[5] Chauvet M. An econometric characterization of business dynamics with factor structure and regime switching[J]. International Economic Review, 1998, 39(4): 969-996.
[6] Camacho M. Vector smooth transition regression models for US GDP and the composite index of leading indicators[J]. Journal of Forecasting, 2004, 23(3): 173-196.
[7] Öcal N. Nonlinear models, composite longer leading indicator and forecasts for UK real GDP[J]. Applied Economics, 2006, 38(9): 1049-1053.
[8] Teräsvirta T, Anderson H M. Characterizing nonlinearities in business cycles using smooth transition autoregressive models[J]. Journal of Applied Econometrics, 1992, 7(Supp1): 119-136.
[9] Teräsvirta T. Specification, estimation and evaluation of smooth transition autoregressive models[J]. Journal of the American Statistical Association, 1994, 89(425): 208-218.
[10] Bierens H J. Nonparametric cointegration analysis[J]. Journal of Econometrics, 1997, 77(2): 379-404.
[11] Huh H. GDP growth and the composite leading index: A nonlinear causality analysis for eleven countries[J]. Economics Letters, 2002, 77(1): 93-99.
PDF(1025 KB)

306

Accesses

0

Citation

Detail

段落导航
相关文章

/