区间值信念结构下冲突证据组合

陈圣群, 王应明

系统工程理论与实践 ›› 2014, Vol. 34 ›› Issue (1) : 256-261.

PDF(485 KB)
PDF(485 KB)
系统工程理论与实践 ›› 2014, Vol. 34 ›› Issue (1) : 256-261. DOI: 10.12011/1000-6788(2014)1-256
论文

区间值信念结构下冲突证据组合

    陈圣群1,2, 王应明1
作者信息 +

Conflicting evidence combination of interval-valued belief structures

    CHEN Sheng-qun1,2, \ WANG Ying-ming1
Author information +
文章历史 +

摘要

区间值信念结构下证据理论在信息融合、决策分析中有着广泛的应用前景.针对区间值冲突证据组合出现反直观结果问题,提出一种新的证据组合方法.从整体角度构建证据间Pignistic概率距离的最优化模型,通过得出的相对权重来修正证据, 使之符合Dempster组合规则可用范围,然后组合. 算例分析表明所提方法是合理有效的.

Abstract

Dempster-Shafer evidence theory based on interval-valued belief structures has wide application prospect in the fields of information
fusion and decision analysis. To suppress the counterintuitive results generated from the combination of conflicting interval-valued belief
structures, a modified evidence combination approach is proposed. An optimization model of pignistic probability distance is built from the
global perspective to provide the relative importance weights for weighting evidence such that the weighted evidence can be reasonably combined with the
Dempster rule of combination. Numerical examples show the efficiency and rationality of the proposed approach.

关键词

证据理论 / 区间值 / Pignistic概率距离 / 优化组合

Key words

evidence theory / interval-valued / pignistic probability distance / optimal combination

引用本文

导出引用
陈圣群 , 王应明. 区间值信念结构下冲突证据组合. 系统工程理论与实践, 2014, 34(1): 256-261 https://doi.org/10.12011/1000-6788(2014)1-256
CHEN Sheng-qun , \ WANG Ying-ming. Conflicting evidence combination of interval-valued belief structures. Systems Engineering - Theory & Practice, 2014, 34(1): 256-261 https://doi.org/10.12011/1000-6788(2014)1-256
中图分类号: TP182    O22   

参考文献

[1] Wang Z Y, Marek-Sadowska M, Tsai K H, et al. Multiple fault diagnosis using n-detection tests[C]// Santa Barbra. IEEE Computer Society. Proceedings of the 21st International Conference on Computer Design, USA California University Press, 2003: 198-201.
[2] 周福娜,文成林,汤天浩,等.基于指定元分析的多故障诊断方法[J].自动化学报, 2009, 35(7): 971-982.Zhou F N, Wen C L, Tang T H, et al. DCA based multiple faults diagnosis method[J]. Acta Automatica Sinica, 2009, 35(7): 971-982.
[3] Riahi-Belkaoui A. Intellectual capital and firm performance of us multinational firms[J]. Journal of Intellectual Capital, 2003, 4(2): 215-226.
[4] Xu B, Feng K M. Determine the masking fault sets in complex systems[C]// IEEE Aerospace and Electronic System Society. IEEE Autotestcon Proceedings, USA Anaheim: IEEE Press, 2009: 585-590.
[5] 陈世杰,连可,王厚军.采用多信号流图模型的雷达接收机故障诊断方法[J].电子科技大学学报, 2009, 38(1): 87-91.Chen S J, Lian K, Wang H J. Fault diagnosis method of radar receiver using multi-signal flow graphs model[J]. Journal of University of Electronic Science and Technology of China, 2009, 38(1): 87-91.
[6] 连可,龙兵,王厚军.基于贝叶斯最大后验概率准则的大型复杂系统故障诊断方法研究[J].兵工学报, 2008, 29(3): 352-356.Lian K, Long B, Wang H J. A fault diagnosis approach of the large complex system based on Bayes theory[J]. Acta Armamentarii, 2008, 29(3): 352-356.
[7] 方甲永,肖明清,王学奇,等.测试不可靠条件下多故障诊断方法[J].北京航空航天大学学报, 2011, 37(4): 433-437.Fang J Y, Xiao M Q, Wang X Q, et al. Multiple fault diagnosis method with unreliable test[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(4): 433-437.
[8] Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm[C]// Proceedings of the World Multiconference on Systemic, Cybernetics and Informatics, Piscataway, NJ, 1997: 4104-4109.
[9] Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization[C]// Proceedings of the 2000 Congress on Evolutionary Computation, San Diego, 2000: 84-88.
[10] 蒋荣华,王厚军,龙兵. 基于DPSO的改进AO*算法在大型复杂电子系统最优序贯测试中的应用[J].计算机学报, 2008, 31(10): 1835-1838.Jiang R H, Wang H J, Long B. Applying improved AO* based on DPSO algorithm in the optimal test-sequencing problem of large-scale complicated electronic system[J]. Chinese Journal of Computers, 2008, 31(10): 1835-1838.
[11] Trelea I C. The particle swarm optimization algorithm: Convergence analysis and parameter selection[J]. Information Processing Letters, 2003, 85(6): 317-325.

基金

国家杰出青年科学基金项目(70925004); 福建省教育厅科技项目(JA11269)

PDF(485 KB)

361

Accesses

0

Citation

Detail

段落导航
相关文章

/