区分证据重要性及分配证据冲突的新方法
New approaches of distinguishing the evidences importance and allocating the evidences conflict
基于证据"可信度"和"确定性",定义了证据"有效性",提出了区分证据重要性的新方法,修正了原始证据模型; 界定了焦元"有效信度容量"和"识别一致性", 阐明了分配证据冲突的依据,构建了分配系数计算公式,修改了证据合成规则.对比实验表明:改进的证据合成方法在处理高度冲突证据合成时,具有更好的收敛性和鲁棒性.
Based on the reliability and certainty of evidences, this paper defined the effectiveness of evidences, proposed a new approach of distinguishing the evidences importance, revised the original evidences model. Meanwhile, this paper defined the effective reliability capacity and recognition consistency of focal elements, clarified the rule of allocating the evidences conflict, constructed the calculation formula of the allocation coefficient, modified the evidences combination rule. The comparing experiment demonstrates that the proposed evidences combination approach has better astringency and robustness when dealing with the combination of highly conflicting evidences.
证据合成 / 冲突证据 / 有效性 / 识别一致性 {{custom_keyword}} /
evidence combination / conflicting evidence / effectiveness / recognition consistency {{custom_keyword}} /
[1] Dempster A P. Upper and lower probabilities induced by a multi-valued mapping[J]. The Annals of Mathematical Statistics, 1967, 38(2): 325-339.
[2] Shafer G. A mathematical theory of evidence[M]. Princeton University Press, 1976.
[3] Yang J B, Singh M G. An evidential reasoning approach for multiple-attribute decision making with uncertainty[J]. IEEE Transactions On System, Man and Cybernetics, 1994, 24(1): 1-18.
[4] Wu W Z. Attribute reduction based on evidence theory in incomplete decision systems[J]. Information Sciences, 2008, 178(5): 1355-1371.
[5] Hua Z S, Gong B G, Xu X Y. A DS-AHP approach for multi-attribute decision making problem with incomplete information[J]. Expert Systems with Applications, 2008, 34(3): 2221-2227.
[6] 陈增明. 群决策环境下证据理论决策方法研究与应用[D]. 合肥: 合肥工业大学, 2006.Chen Z M. Research and application of evidence theory in group decision-making[D]. Hefei: Hefei University of Technology, 2006.
[7] Basir O, Yuan X H. Engine fault diagnosis based on multi-sensor information fusion using Dempster-Shafer evidence theory[J]. Information Fusion, 2007, 8(4): 379-386.
[8] Zeng D H, Xu J M, Xu G. Data fusion for traffic incident detection using D-S evidence theory with probabilistic SVMs[J]. Journal of Computers, 2008, 3(10): 36-43.
[9] Lin T C. Partition belief median filter based on Dempster-Shafer theory for image processing[J]. Pattern Recognition, 2008, 41(1): 139-151.
[10] Duarte M, Hu Y H. Distance based decision fusion in a distributed wireless sensor network[J]. Telecommunication Systems, 2004, 26(2-4): 339-350.
[11] Xu L J, Chen Y Z, Cui P Y. Improvement of D-S evidential theory in multisensor data fusion system[C]// Proc of the 6th World Congress on Intelligent Control and Automation, 2004, 4: 3124-3128.
[12] 陈一雷, 王俊杰. 一种D-S证据推理的改进方法[J]. 系统仿真学报, 2004, 16(1): 28-30.Chen Y L, Wang J J. An improved method of D-S evidential reasoning[J]. Journal of System Simulation, 2004, 16(1): 28-30.
[13] 王小艺, 刘载文, 侯朝桢, 等. 一种基于最优权重分配的D-S改进算法[J]. 系统工程理论与实践, 2006, 26(11): 103-107.Wang X Y, Liu Z W, Hou C Z, et al. An improved D-S algorithm based on the optimization weight distribution[J]. Systems Engineering — Theory & Practice, 2006, 26(11): 103-107.
[14] 刘海燕, 赵宗贵, 刘熹. D-S证据理论中冲突证据的合成方法[J]. 电子科技大学学报, 2008, 37(5): 701-704.Liu H Y, Zhao Z G, Liu X. Combination of conflict evidences in D-S theory[J]. Journal of University of Electronic Science and Technology of China, 2008, 37(5): 701-704.
[15] 白剑林, 王煜. 一种解决D-S理论证据冲突的有效方法[J]. 系统工程与电子技术, 2009, 31(9): 2106-2109.Bai J L, Wang Y. Efficient combination approach to conflict evidence for D-S theory[J]. Systems Engineering and Electronics, 2009, 31(9): 2106-2109.
[16] 张盛刚, 李巍华, 丁康. 基于证据可信度的证据合成新方法[J]. 控制理论与应用, 2009, 26(7): 812-814.Zhang S G, Li W H, Ding K. A novel approach to evidence combination based on the evidence credibility[J]. Control Theory & Applications, 2009, 26(7): 812-814.
[17] Lefevre E, Colot O, Vannoonrenberghe P. Belief functions combination and conflict management[J]. Information Fusion, 2002, 3(2): 149-162.
[18] 邓勇, 施文康. 一种改进的证据推理组合规则[J]. 上海交通大学学报, 2003, 37(8): 1275-1278.Deng Y, Shi W K. A modified combination rule of evidence theory[J]. Journal of Shanghai Jiaotong University, 2003, 37(8): 1275-1278.
[19] 蒲书缙, 杨雷, 杨莘元, 等. 一种改进的证据合成规则[J]. 计算机工程, 2006, 32(23): 7-9.Pu S J, Yang L, Yang S Y, et al. A modified combination rule of evidence theory[J]. Computer Engineering, 2006, 32(23): 7-9.
[20] 梁旭荣, 姚佩阳, 梁德磊.改进的证据组合规则及其在融合目标识别中的应用[J]. 电光与控制, 2008, 15(12): 37-41.Liang X R, Yao P Y, Liang D L. Improved combination rule of evidence theory and its application in fused target recognition[J]. Electronics Optics & Control, 2008, 15(12): 37-41.
[21] 李文立, 郭凯红. D-S证据理论合成规则及冲突问题[J]. 系统工程理论与实践, 2010, 30(8): 1422-1431.Li W L, Guo K H. Combination rules of D-S evidence theory and conflict problem[J]. Systems Engineering — Theory & Practice, 2010, 30(8): 1422-1431.
[22] Jousselme A L, Grenier D, Bosse E. A new distance between two bodies of evidence[J]. Information Fusion, 2001, 2(2): 91-101.
[23] 王彬. 熵与信息[M]. 西安: 西北工业大学出版社, 1994. Wang B. Entropy and information[M]. Xi'an: Northwestern Polytechnical University Press, 1994.
[24] Yager R R. On the D-S framework and new combination rules[J]. Information Sciences, 1987, 41(2): 93-138.
国家自然科学基金(70972126);高等学校博士学科点专项科研基金(20106102110042)
/
〈 | 〉 |