
多入多出非仿射系统的径向基网络逆控制方法
RBF network inverse control method for MIMO nonaffine system
针对多入多出非仿射非线性系统, 提出了一种径向基网络补偿逆模型误差的自适应控制方法. 将难以求逆的非仿射项分解为可逆部分和不可逆部分, 可逆部分作为理想逆来近似系统的直接逆, 逆模型误差用径向基网络的自适应控制信号补偿, 网络权值利用不可逆部分非仿射信息更新, 应用均值理论和Lyapunov函数证明了自适应控制律的稳定性. 仿真结果验证了该方法的有效性.
A radius basis function (RBF) network inverse control method is considered for a class of multi-input multi-output (MIMO) nonaffine nonlinear system. In this method, the nonaffine term which is hard to invert is decomposed into invertible part and un-invertible part, the invertible part is used to approximate the inversion of system and the invert error is approximately canceled by the adaptive signal, the un-invertible part is used to update the RBF network's weights. Using Lyapunov's direct method, it is shown that all the signals of the closed-loop system are uniformly ultimately bounded. Simulation results are provided to show the good tracking performance and effectiveness of the proposed method.
非仿射系统 / 多入多出 / 径向基网络 / 自适应控制 {{custom_keyword}} /
nonaffine system / MIMO / RBF neural network / adaptive control {{custom_keyword}} /
[1] Tian J, Xie X J. Adaptive state-feedback stabilization for more general high-order stochastic nonlinear systems[J]. Acta Automatica Sinica, 2008, 34(9): 1188-1192.
[2] Rudenko O G, Bezsonov A A, Liashenko A S, et al. Approximation of Gaussian basis functions in the problem of adaptive control of nonlinear objects[J]. Cybernetics and Systems Analysis, 2011, 47(1): 1-10.
[3] 杜贞斌, 陈为胜, 宋宜斌, 等. 不确定非线性系统的二次稳定新方法[J]. 系统工程理论与实践, 2011, 31(9): 1784-1789.Du Z B, Chen W S, Song Y B, et al. A new approach to quadratic stability for uncertain nonlinear systems[J]. Systems Engineering — Theory & Practice, 2011, 31(9): 1784-1789.
[4] Zhao T, Sui S L. Adaptive control for a class of non-affine nonlinear systems via two-layer neural networks[C]// The Sixth World Congress on Intelligent Control and Automation, 2006, 1: 958-962.
[5] 赵彤, 曹世伟, 赵品. 基于神经网络MIMO非仿射系统自适应控制[J]. 青岛科技大学学报:自然科学版, 2010, 31(3): 317-320.Zhao T, Cao S W, Zhao P. Neural network based adaptive control for MIMO non-affine systems[J]. Journal of Qingdao University of Science and Technology: Natural Science Edition, 2010, 31(3): 317-320.
[6] Boskovic J D, Chen L J, Mehra R K. Multivariable adaptive controller design for a class of non-affine models arising in flight control[C]// Proceedings of the 40th IEEE Conference on Decision and Control, 2001, 3: 2442-2447.
[7] Calise A J, Sharma M, Corban J E. Adaptive autopilot design for guided munitions[J]. Journal of Guidance, Control and Dynamics, 2000, 23(5): 837-843.
[8] Yang B J, Calise A J. Adaptive control of a class of nonaffine systems using neural networks[J]. IEEE Transactions on Neural Networks, 2007, 18(4): 1149-1159.
[9] Hovakimyan N, Lavretsky E, Sasane A, et al. Dynamic inversion for nonaffine-in-control systems via time-scale separation: Part I[C]// Proceedings of the 2005 American Control Conference, 2005: 3542-3547.
[10] Lavretsky E. Hovakimyan N. Adaptive dynamic inversion for nonaffine-in-control systems via time-scale separation: Part II[C]// Proceedings of the 2005 American Control Conference, 2005: 3548-3553.
[11] Meng B, Jing Y W, Liu X P. Asymptotical stabilization of nonaffine nonlinear systems using singular perturbation theory[J]. Journal of System Simulation, 2009, 21(5): 1423-1426.
[12] Tee K P, Ge S S, Tay F E H. Adaptive neural network control for helicopters in vertical flight[J]. IEEE Transactions on Control Systems Technology, 2008, 16(4): 753-762.
[13] Imai A K, Costa R R, Hsu L, et al. Multivariable adaptive control using high-frequency gain matrix factorization[J]. IEEE Transactions on Automatic Control, 2004, 49(7): 1152-1156.
[14] Ge S S, Tian Z, Lee T H. Nonlinear control of a dynamic model of HIV-1[J]. IEEE Transactions on Biomedical Engineering, 2005, 52(3): 353-361.
[15] 贺乃宝, 高倩, 姜长生, 等. MIMO非仿射非线性系统的自适应模糊控制[J]. 控制理论与应用, 2010, 27(12): 1783-1786.He N B, Gao Q, Jiang C S, et al. Adaptive fuzzy control for MIMO non-affine nonlinear systems[J]. Control Theory & Applications, 2010, 27(12): 1783-1786.
国家自然科学基金(60904038)
/
〈 |
|
〉 |