
自适应逐次逼近遗传算法及其在水库群长期调度中的应用
Adaptive genetic algorithm successive approximation and its application to long-term reservoirs operation
传统遗传算法的解空间均为可行解, 经过遗传操作产生的新个体若为不可行解, 则需要对其进行修正. 但在梯级水库调度中, 由于各时段间、 水库间存在的水力电力联系, 使这种修正变得复杂困难. 鉴于此, 本文提出了自适应逐次逼近遗传算法(AGASA), 它可在包含不可行解的空间中寻优, 并根据寻优结果自动调整搜索空间与控制参数, 从而逐渐逼近最优解. 最后通过一个算例, 并与离散微分动态规划法(DDDP), 逐步优化法(POA)的优化结果进行比较, 说明了该方法的可行性与有效性.
In traditional genetic algorithm (GA), all chroms in the solution space are feasible; and if the new chroms created by genetic operation become infeasible they need to be revised. In cascade reservoirs operation, however, such revising becomes complicated because of the hydraulic and electric connections between time sequences and between reservoirs. Therefore, an advanced GA——adaptive genetic algorithm successive approximation (AGASA)——is proposed in this paper, which can do optimizing within a space including feasible and infeasible schemes, and finally find the optimum by successively altering the space and adaptively changing control parameters. Finally, a simulated example is provided, and the results are compared to those obtained by discrete differential dynamic programming (DDDP) and progressive optimality algorithm (POA) respectively, which indicates the feasibility and validity of AGASA.
水库调度 / 优化调度 / 遗传算法 / 自适应 / 逐次逼近 {{custom_keyword}} /
reservoir operation / optimal operation / genetic algorithm / adaptive / successive approximation {{custom_keyword}} /
[1] Holland J H. Adaptation in Natural and Artificial Systems[M]. MIT Press, 1975.
[2] 王小平, 曹立明. 遗传算法——理论、应用与软件实现[M]. 西安: 西安交通大学出版社, 2002.Wang X P, Cao L M. Genetic Algorithm——Theory, Application and Software Realization [M]. Xi'an: Xi'an Jiaotong University Press, 2002.
[3] Hakimi-Asiabar M, Ghodsypour S H, Kerachian R. Deriving operating policies for multi-objective reservoir systems: Application of self-learning genetic algorithm[J]. Applied Soft Computing, 2010, 10(4): 1151-1163.
[4] 王万良, 周慕逊, 管秋, 等. 基于遗传算法的小水电站优化调度方法的研究与实践[J]. 水力发电学报, 2005, 24(3): 6-11.Wang W L, Zhou M X, Guan Q, et al. Research and practice of optimum operation method based on genetic algorithm for small hydropower stations[J]. Journal of Hydroelectric Engineering, 2005, 24(3): 6-11.
[5] 畅建霞, 黄强, 王义民. 基于改进遗传算法的水电站水库优化调度[J]. 水力发电学报, 2001(3): 85-90.Chang J X, Huang Q, Wang Y M. Optimal operation of hydropower station reservoir by using an improved genetic algorithm[J]. Journal of Hydroelectric Engineering, 2001(3): 85-90.
[6] 陈立华, 梅亚东, 董雅洁, 等. 改进遗传算法及其在水库群优化调度中的应用[J]. 水利学报, 2008, 39(5): 550-556.Chen L H, Mei Y D, Dong Y J, et al. Improved genetic algorithm and its application in optimal dispatch of cascade reservoirs[J]. Journal of Hydraulic Engineering, 2008, 39(5): 550-556.
[7] 万星, 周建中. 自适应对称调和遗传算法在水库中长期发电调度中的应用[J]. 水科学进展, 2007, 18(4): 598-603.Wan X, Zhou J Z. Application of genetic algorithm for self adaptation, symmetry and congruity in reservoir mid-long hydraulic power operation[J]. Advances in Water Science, 2007, 18(4): 598-603.
[8] 王少波, 解建仓, 孔珂. 自适应遗传算法在水库优化调度中的应用[J]. 水利学报 2006, 37(4): 480-485.Wang S B, Xie J C, Kong K. Application of adaptive genetic algorithm in optimization of reservoir operation[J]. Journal of Hydraulic Engineering, 2006, 37(4): 480-485.
[9] 刘卫林, 董增川, 王德智. 混合智能算法及其在供水水库群优化调度中的应用[J]. 水利学报, 2007, 38(12): 1437-1443.Liu W L, Dong Z C, Wang D Z. Hybrid intelligent algorithm and its application in dispatch optimization for water supply reservoir group[J]. Journal of Hydraulic Engineering, 2007, 38(12): 1437-1443.
[10] 刘攀, 郭生练, 雒征, 等. 求解水库优化调度问题的动态规划——遗传算法[J]. 武汉大学学报:工学版, 2007, 40(5): 1-6.Liu P, Guo S L, Luo Z, et al. Optimization of reservoir operation by using dynamic programming-genetic algorithm[J]. Engineering Journal of Wuhan University, 2007, 40(5): 1-6.
[11] Lakshminarasimman L, Subramanian S. A modified hybrid differential evolution for short-term scheduling of hydrothermal power systems with cascaded reservoirs[J]. Energy Conversion and Management, 2008, 49(10): 2513-2521.
[12] Wong S Y W. Hybrid simulated annealing/genetic algorithm approach to short-term hydro-thermal scheduling with multiple thermal plants[J]. International Journal of Electrical Power & Energy Systems, 2001, 23(7): 565-575.
国家自然科学基金(41061053);云南省自然科学基金(2009ZC005X)
/
〈 |
|
〉 |