
考虑早晚高峰出行链的出行方式选择均衡与定价机制
Mode choice equilibrium and pricing mechanisms considering peak trip chain
考虑从生活区与工作区之间的早晚高峰出行链,研究三种出行方式: 地铁直达,停车换乘和全程驾车. 基于瓶颈理论,建立了分层Logit模型刻画出行者的交通方式决策行为,利用弹性需求下的出行方式选择均衡等式, 进一步讨论了四种机制下的地铁票价和停车收费策略.研究结果表明,地铁和换乘停车场由政府经营,采用低票价的政策吸引出行者, 而工作区停车场由公司经营,实行高停车费的政策,不仅能有效鼓励停车换乘,提高公交出行分担率,并且能实现系统净收益最大. 算例结果从理论上支持了当前北京施行的差别化停车收费政策.
This paper studies the mode choice problem considering the peak travel chain in a day. The transportation system comprises a subway parallel to a bottleneck-constrained highway between a residential area and a working place. Commuters can get their destinations by either auto or transit only; besides these two modes, they can drive to the bottleneck, park there and then take subway to the destination. Based on the bottleneck theory, a hierarchical Logit model is used to describe commuters' mode choice behaviors, and then mode choice equilibrium equations under elastic demand are constructed. Furthermore, optimal fare and parking fee strategies under four mechanisms are discussed. It is shown that when transit and park-and-ride place are operated by government and the working area parking lot belongs to a private enterprise, lower fares and higher parking fees in working area can effectively encourage parking interchanging, increase public transit trip contribution rate and maximize the system's total net benefit. Numerical results also support the current differentiation parking charge policy in Beijing.
方式选择 / 价格竞争 / 分层Logit模型 / 瓶颈模型 / 出行链 {{custom_keyword}} /
mode choice / price competition / hierarchical Logit model / bottleneck model / trip chain {{custom_keyword}} /
[1] 刘剑锋,李媛,卢全毅,等. 小汽车通勤出行者驻车换乘接运方式选择分析[J]. 北京交通大学学报, 2010, 34(3): 129-133.Liu J F, Li Y, Lu Q Y, et al. Car traveler P+R mode choice analysis[J]. Journal of Beijing Jiaotong University, 2010, 34(3): 129-133.
[2] Pedersen P A. On the optimal fare policies in urban transportation[J]. Transportation Research Part B, 2003, 37(5): 423-435.
[3] Wang J Y T, Lindsey R, Yang H. Nonlinear pricing on private roads with congestion and toll collection costs[J]. Transportation Research Part B, 2011, 45(1): 9-40.
[4] Tabuchi T. Bottleneck congestion and modal split[J]. Journal of Urban Economics, 1993, 34: 414-431.
[5] 黄海军, Bell M G H,杨海.公共与个体竞争交通系统的定价研究[J]. 管理科学学报, 1998, 1(2): 17-23.Huang H J, Bell M G H, Yang H. Pricing and modal split in a competitive system of mass transit and highway[J]. Journal of Management Sciences in China, 1998, 1(2): 17-23.
[6] Huang H J. Fares and tolls in a competitive system with transit and highway: The case with two groups of commuters[J]. Transportation Research Part E, 2000, 36(4): 267-284.
[7] Huang H J. Pricing and logit-based mode choice models of a transit and highway system with elastic demand[J]. European Journal of Operational Research, 2002, 140(3): 562-570.
[8] 田琼,黄海军,杨海. 瓶颈处停车换乘logit随机均衡选择模型[J]. 管理科学学报, 2005, 8(1): 1-6.Tian Q, Huang H J, Yang H. Mode choice models based on logit stochastic equilibrium in transportation systems with park-and-ride option[J]. Journal of Management Sciences in China, 2005, 8(1): 1-6.
[9] Ben-Akiva M E. The structure of travel demand models[D]. PhD Thesis, MIT, Cambridge, MA, 1973.
[10] Strathman J G, Dueker K J. Understanding trip chaining. Special reports on trip and vehicle attributes[R]. 1990 NPTS Reports Series, No. FHWA-PL-95-033, Department of Transportation, 1995.
[11] Ye X, Pendyala R M, Gottardi G. An exploration of the relationship between mode choice and complexity of trip chaining patterns[J]. Transportation Research Part B, 2007, 41(1): 96-113.
[12] Zhang X N, Yang H, Huang H J, et al. Integrated scheduling of daily work activities and morning-evening commutes with bottleneck congestion[J]. Transportation Research Part A, 2005, 39(1): 41-60.
[13] Vickrey W S. Congestion theory and transport investment[J]. American Economic Review, 1969, 59(2): 251-260.
[14] Oppenheim N. Urban Travel Demand Modeling: From Individuals Choices to General Equilibrium[M]. Wiley, New York, 1995.
[15] 李乐园,张小宁,张红军. 基于交通瓶颈的动态交通分配模型[J]. 系统工程理论与实践, 2006, 26(4): 125-129.Li L Y, Zhang X N, Zhang H J. A model of dynamic traffic assignment based on traffic bottleneck with varying capacity[J]. Systems Engineering——Theory & Practice, 2006, 26(4): 125-129.
[16] Liu T L, Lu X S, Deng Q. Modeling mixed continuous and discrete corridor problems with multimodal choices[C]// Proceedings of the 3rd International Joint Conference on Computational Sciences and Optimization (CSO 2010), Los Alamitos, CA, IEEE Computer Society, 2010: 508-512.
[17] 吴文祥,黄海军,范景军. 交通信息对交通行为的影响和信息发布策略研究的一个新模型[J]. 系统工程理论与实践, 2008, 28(3): 144-150.Wu W X, Huang H J, Fan J J. A new model for studying impacts by traveler information systems on travel behavior and information release strategy[J]. Systems Engineering——Theory & Practice, 2008, 28(3): 144-150.
[18] Mirabel F, Reymond M. Bottleneck congestion pricing and modal split: Redistribution of toll revenue[J]. Transportation Research Part A, 2011, 45(1): 18-30.
国家自然科学基金委创新研究群体基金(70821061); 北京航空航天大学博士生创新基金(300528)
/
〈 |
|
〉 |