针对如何提高面向服务军事信息系统中任务工作流执行的时效性和成功概率, 提出了服务资源分配的并行优化方法. 首先给出了服务资源分配的系统框架, 在分析服务并行执行数目、 任务成功率、任务完成时间及服务执行代价之间关系的基础上, 建立了服务并行优化的目标规划数学模型, 并提出了一种求解该模型的改进粒子群算法(DPSO). 该算法通过引入粒子细微扰动、优化粒子飞行边界及粒子优胜劣汰等扩大搜索范围,提高获得最优解的概率. 实验结果表明服务分配的并行优化及其DPSO 求解算法是提高任务工作流执行成功率和时效性的有效方法.
Abstract
Towards how to improve the efficiency and successful probability of task-workflows in service oriented military information system, a parallel optimization method of service resource allocation was proposed. Firstly, a service resource allocation framework is offered. By analyzing the relationship of service executing number, task executing time, task successful probability and service executing cost, a target programming mathematical model for parallel optimization of service resources was established. Then, an ameliorated particle swarm optimization (called DPSO) algorithm was proposed to resolve the mathematical model. By introducing random disturbance, searching boundary optimization and survival of the fittest for the particles, DPSO extended searching scope to obtain the optimal solution with a higher probability. Experimental results show that parallel optimization method of service resource allocation and the DPSO algorithm are effective methods to improve the efficiency and successful probability of task-workflows.
关键词
服务并行优化 /
军事信息服务 /
粒子群算法
{{custom_keyword}} /
Key words
parallel optimization of services /
military information service /
PSO arithmetic
{{custom_keyword}} /
中图分类号:
E89
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Shook R. Net-enabled command capability and joint combat capability enveloper overview brief[R]. US Joint Forces Command, 29 Aug 2007.
[2] Konig D, Lonhmsnn N, Moser S, et al. Extending the compatibility notion for abstract WS-BPEL processes[C]// Proceedings of the International World Wide Web Conference, Beijing, China: WWW'08, 2008: 785-794.
[3] Ardagna D, Pernici B. Adaptive service composition in flexible processes[J]. IEEE Transactions on Software Engineering, 2007, 33(6): 369-384.
[4] 冯名正. Web服务组合关键技术研究[D]. 南京: 东南大学, 2006.Feng M Z. Research on the key technologies of Web services composition[D]. Nanjing: Southeast University, 2006.
[5] Werner C, Buschmann C. Compressing SOAP messages by using differential encoding [C]// IEEE International Conference on Web Services, Califoria: ICWS'04, 2004: 540-547.
[6] Nicolas S, Charles F J. Fault tolerance collectors for unreliable Web Services[C]// 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, Edinburgh: DSN'07, 2007: 51-60. ewpage
[7] Hamcy J, Doshi P. Speeding up adaption of web service composition using expiration times[C]// International World Wide Web Conference, Canada: WWW'07, 2007: 1023-1032.
[8] Zheng H Y, Zhao W L, Yang J. QoS analysis for web service composition[C]// 2009 IEEE International Conference on Services Computing, Bangalore: SCC'09, 2009: 235-242.
[9] Zeng L Z, Benatallah B, Ngu A H H, et al. QoS-aware middle ware for web services composition[J]. IEEE Trans Softw Eng, 2004, 30(5): 311-327.
[10] Aron M, Drushnel P, Zwaenepoel W. Cluster reserves: A mechanism for resource management in cluster-based network servers[C]// Proceeding of the Int'l Conf on Measurement and Modelling of Computer Systems (SIGMETRICS 2000), Santa Clara: ACM, 2000: 90-101.
[11] 伍之昂, 罗军舟, 宋爱波, 等. 具有QoS保证的服务资源联合分配与管理[J]. 软件学报, 2009, 20(12): 3150-3162.Wu Z A, Luo J Z, Song A B, et al. QoS guaranteed service resource co-allocation and management[J]. Journal of Software, 2009, 20(12): 3150-3162.
[12] Kennedy J, Eberhart R. Particle swarm optimization[C]// Proceedings of the 4th IEEE International Conference on Neural Networks, Piscataway: IEEE Service Center, 1995: 1942-1948.
[13] Ling S H, Iu H H C, Leung F H F. Improved hybrid particle swarm optimized wavelet neural network for modeling the development of fluid dispensing for electronic packaging[J]. IEEE Trans Ind Electron, 2008, 55(9): 3447-3460.
[14] 戴朝华. 粒子群优化算法综述[EB/OL]. http://www.sciencenet.cn/upload/blog/file/2010/2/20102792556213369.pdf.
[15] Langdon W B, Riccardo P. Evolving problems to learn about particle swarm and other optimizers[C]// Proc CEC-2005, 2005, 1: 81-88.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(70601036); "十一五"装备预先研究项目
{{custom_fund}}