针对Weibull型多不可修部件的备件需求确定问题, 提出一种基于Monte-Carlo模拟的方法, 能够较为方便地得到结果, 该方法同样也适用于其它几种分布类型备件量的确定. 在此基础上, 又研究了工程应用中利用指数方法确定Weibull型备件需求量的适应性问题. 从理论上证明了利用指数方法近似计算单部件的备件量具有保守性, 并通过实例计算表明指数方法确定多部件备件量也具有保守性. 简要分析了保守的程度与保障时间、 保障度、部件数量以及Weibull形状参数的关系. 最后给出指数方法的应用时机.
Abstract
As to the spare demand of the multiple irrepairable components of the Weibull type, the method of Monte-Carlo simulation is employed to compute the demand of spare conveniently. This method is also applicable to the types of spare with other distributions. Furthermore, the adaptability that using the exponential method to acquire the spare demand of Weibull type in engineering application is studied. By reasoning, the result indicates the conservativeness of the exponential method to calculate the spare demand for the single component approximately. The practical example also shows the conservativeness of the exponential method in the condition of multiple components. The extent of conservativeness is mainly related to the supporting time, supporting grade, component number and the shape parameter of the distribution through brief analysis. Finally, the application occasion of the exponential method is presented.
关键词
Weibull型多不可修部件 /
备件需求 /
Monte-Carlo模拟 /
指数方法
{{custom_keyword}} /
Key words
multiple irrepairable components of the Weibull type /
spare demand /
Monte-Carlo simulation /
exponential method
{{custom_keyword}} /
中图分类号:
TP391.9
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Sherbrooke C C. Optimal Inventory Modeling of Systems[M]. Boston/Dordrecht/London: Kluwer Academic Publishes, 2004:
[2] 李金国, 丁红兵.备件需求量计算模型分析[J].电子产品可靠性与环境试验, 2000(3): 11-14. Li J G, Ding H B. Calculation models of spare part capacity[J]. Electronic Product Reliability and Environmental Testing, 2000(3): 11-14.
[3] 孙建国, 夏长俊, 赵修平,等. 引进装备备件可靠性及保障研究[J]. 海军航空工程学院学报, 2010, 25(1): 97-100. Sun J G, Xia C J, Zhao X P, et al. Research on spare parts reliability and support of imported equipment[J]. Journal of Naval Aeronautical and Astronautical University, 2010, 25(1): 97-100.
[4] 郭继周, 张建军, 郭波,等.多个并行并联作战单元备件优化配置建模[J].火力与指挥控制, 2008, 33(6): 26-29. Guo J Z, Zhang J J, Guo B, et al. Models of spare optimization allotment for air-defense combat unit with k/n components Configuration[J]. Fire Control and Command Control, 2008, 33(6): 26-29.
[5] Admari S V, Zuo M J, Dill G. A fast and robust reliability evaluation algorithm for generalized multi-stage k-out-of-n systems[J]. IEEE Trans on Reliability, 2009, 58(1): 88-97.
[6] 龙军, 康锐,马麟, 等.任意寿命分布的多部件系统备件配置优化算法[J].北京航空航天大学学报, 2007, 33(6): 698-700. Long J, Kang R, Ma L, et al. Algorithm for spares optimization of system with multi-items with different life distributions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(6): 698-700.
[7] 刘新亮, 张涛, 郭波.基于分布估计算法的备件优化配置[J].系统工程理论与实践, 2009, 29(2): 144-150. Liu X L, Zhang T, Guo B. Model of spare parts optimization based on estimation of distribution algorithms[J]. Systems Engineering —— Theory & Practice, 2009, 29(2): 144-150.
[8] 蔡景, 左洪福, 王华伟, 基于成本的民用航空发动机维修方案优化研究[J]. 机械科学与技术, 2007, 26(2): 167-171. Cai J, Zuo H F, Wang H W. Aviation engine maintenance program optimization based on maintenance cost[J]. Mechanical Science and Technology, 2007, 26(2): 167-171.
[9] 程文鑫, 秦健, 张志华.基于可靠性增长的备件需求模型及其统计分析[J].北京理工大学学报, 2008, 28(3): 230-232. Cheng W X, Qin J, Zhang Z H. Spare demand model and its statistical analysis with reliability growth hypothesis[J]. Transactions of Beijing Institute of Technology, 2008, 28(3): 230-232.
[10] 张建军, 李树芳, 张涛, 等.备件保障度评估与备件需求量研究[J]. 电子产品可靠性与环境试验, 2004(6): 18-22. Zhang J J, Li S F, Zhang T, et al. Study on spare availability and optimization model[J]. Electronic Production Reliability and Environmental Testing, 2004(6): 18-22.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
总装预研基金(51327020105, 51304010206); 海军工程大学博士生创新基金(HGBSJJ2011009)
{{custom_fund}}