中国制造业生产效率评价:基于并联决策单元的动态DEA方法

赵萌

系统工程理论与实践 ›› 2012 ›› Issue (6) : 1251-1260.

PDF(697 KB)
PDF(697 KB)
系统工程理论与实践 ›› 2012 ›› Issue (6) : 1251-1260. DOI: 10.12011/1000-6788(2012)6-1251
论文

中国制造业生产效率评价:基于并联决策单元的动态DEA方法

    赵萌1,2
作者信息 +

Chinese manufacturing production efficiency evaluation: Based on dynamic DEA efficiency evaluation for DMU with parallel structure

    ZHAO Meng1,2
Author information +
文章历史 +

摘要

在已有的并联决策单元DEA效率评价方法的基础上加入时间维度, 推演出了具有并联决策单元内部结构的复杂系统动态DEA效率评价方法. 该方法克服了传统DEA效率评价方法无视系统内部结构、高估效率指数的缺陷, 并且可以考量决策单元及其内部各生产单位在一个时期内的效率变化, 从而有着更为现实的应用价值. 运用该方法对我国8个经济区域四大类制造业的测算结果显示: “十一五”期间没有一个行业或地区的动态效率指数为0, 这说明我国制造业的生产效率并没有达到最优; 低外向度产业的生产效率增长快于高外向度产业, 低劳动密集度行业的效率改进快于高劳动密集度的行业; 高外向度低劳动密集型产业依然是我国制造业效率改进的''短板"; 劳动密集型产业向中西部转移造成了南部沿海地区制造业生产效率改进的滞后和中西部地区劳动密集型行业的发展.

Abstract

The parallel system with parallel structure is a typical complex system whose inside structure is combined with many parallel production units instead of the traditional ''black box". Integrating the time dimension with DEA efficiency evaluation method for DMU with parallel structure, the dynamic DEA efficiency evaluation index is demonstrated. This method has more practical foundation, because it avoids the defects of traditional DEA efficiency evaluation ignoring system inside structure and overestimating efficiency index and considerate the frequency change of parallel structure and unit in one period. By using this method to our country four broad categories manufacturing in the eight economic regions, the result shows: there is not a industry or region's dynamic efficiency index is zero in the ''11th five-year plan" period, this shows that our manufacturing sector productivity doesn't achieve optimal, the low extroverted degree industries' efficiency grows faster than high extroverted degree industries, low labor intensity industries efficiency improves faster than high labor intensity of industry, high extroverted degree of low labor-intensive industries is still the “short board” of Chinese manufacturing; Labor-intensive industries are transferred to the Midwest caused the lag of south coastal region manufacturing efficiency improvement and the development of the Midwest region labor-intensive industry.

关键词

数据包络分析 / 并联决策单元 / 动态效率评价 / 制造业 / 区域差异

Key words

data envelopment analysis (DEA) / parallel structure / dynamic efficiency evaluation / manufacturing / regional differentiation

引用本文

导出引用
赵萌. 中国制造业生产效率评价:基于并联决策单元的动态DEA方法. 系统工程理论与实践, 2012(6): 1251-1260 https://doi.org/10.12011/1000-6788(2012)6-1251
ZHAO Meng. Chinese manufacturing production efficiency evaluation: Based on dynamic DEA efficiency evaluation for DMU with parallel structure. Systems Engineering - Theory & Practice, 2012(6): 1251-1260 https://doi.org/10.12011/1000-6788(2012)6-1251
中图分类号: F064.1   

参考文献

[1] Yang Y S, Ma B J, Masayuki K. Efficiency measuring DEA model for production system with k independent subsystems[J]. Journal of the Operations Research Society of Japan, 2000, 43(3): 343-354.
[2] Fare R, Grosskopf S. Network DEA[J]. Socio-Economic Planning Sciences, 2000, 34(1): 35-491.
[3] Lewis H F, Sexton T R. Network DEA: Efficiency analysis of organizations with complex internal structure[J]. Computers and Operations Research, 2004, 31(8): 1365-1410.
[4] Chen Y, Liang L, Yang F. A DEA game model approach to supply chain efficiency[J]. Annals of Operations Research, 2006, 145(1): 5-131.
[5] Liang L, Yang F, Cook W D, et al. DEA models for supply chain efficiency evaluation[J]. Annals of Operations Research, 2006, 145(1): 35-491.
[6] 毕功兵, 梁#
[37], 杨锋.两阶段生产系统的DEA效率评价模型[J].中国管理科学, 2007, 15(2): 92-96. Bi G B, Liang L, Yang F. A DEA-based efficiency-measuring model for a two-stage production system[J]. Chinese Journal of Management Science, 2007, 15(2): 92-96.
[7] 毕功兵, 梁#
[37], 杨锋.资源约束型两阶段生产系统的DEA效率评价模型[J].中国管理科学, 2009, 17(2): 71-75. Bi G B, Liang L, Yang F. A DEA-based efficiency-measuring model for two-stage production systems with constrained resources[J]. Chinese Journal of Management Science, 2009, 17(2): 71-75.
[8] 段永瑞, 田澎, 张卫平. 具有独立子系统的DEA模型及其应用[J].管理工程学报, 2006, 20(1): 27-31. Duan Y R, Tian P, Zhang W P. DEA models with independent subsystems and their application[J]. Journal of Engineering Management, 2006, 20(1): 27-31.
[9] Kao C. Efficiency measurement for parallel production systems[J]. European Journal of Operational Research, 2009, 196(8): 1107-1112.
[10] 杨锋, 梁#
[37], 凌六一, 等.并联结构决策单元的DEA效率评价研究[J].中国管理科学, 2009, 17(6): 157-162. Yang F, Liang L, Ling L Y, et al. DEA efficiency evaluating models for DMUs with parallel structure[J]. Chinese Journal of Management Science, 2009, 17(6): 157-162.
[11] 吴三忙, 李善同.中国制造业地理集聚的时空演变特征分析: 1980-2008[J]. 财经研究, 2010, 36(10): 4-14. Wu S M, Li S T. Empirical analysis of space-time evolution of geographic agglomeration of Chinese manufacturing based on the data from 1980 to 2008[J]. Journal of Finance and Economics, 2010, 36(10): 4-14.
[12] 李春顶.中国制造业行业生产率的变动及影响因素---基于DEA 技术的1998-2007 年行业面板数据分析[J].数量经济技术经济研究, 2009(12): 58-69. Li C D. Chinese manufactory industries' productivity change and influence factor[J]. The Journal of Quantitative and Technical Economics, 2009(12): 58-69.

基金

广东省普通高校人文社会科学研究基金重点项目(09JDXM79008)
PDF(697 KB)

Accesses

Citation

Detail

段落导航
相关文章

/