基于奈特不确定性随机波动率期权定价

韩立岩, 泮敏

系统工程理论与实践 ›› 2012 ›› Issue (6) : 1175-1183.

PDF(612 KB)
PDF(612 KB)
系统工程理论与实践 ›› 2012 ›› Issue (6) : 1175-1183. DOI: 10.12011/1000-6788(2012)6-1175
论文

基于奈特不确定性随机波动率期权定价

    韩立岩, 泮敏
作者信息 +

Knightian uncertainty based option pricing with stochastic volatility

    HAN Li-yan, PAN Min
Author information +
文章历史 +

摘要

不同于传统的思路, 本文以奈特不确定的视角处理带有随机波动率的期权定价问题. 首先, 证明随机波动率模型本质上是一个奈特不确定问题; 并且用折现相对熵来度量奈特不确定大小. 然后, 通过一个效用函数来权衡奈特不确定和奈特溢价, 求得个体在奈特不确定下最优概率测度, 导出了含奈特厌恶度γ 的欧式看涨期权定价公式. 通过Monto Carlo模拟发现个体奈特厌恶度γ 和期权的到期日对期权的价格有重要影响, 并使用沪市权证实例给出奈特厌恶度γ 的具体估算方法.

Abstract

This paper deals with the stochastic volatility option pricing model in the viewpoint of Knightian uncertainty. First, we prove that the stochastic volatility model is in fact a Knightian uncertainty model; and we use the discounted relative entropy to measure the Knighitan uncertainty. Then, having balanced the Knightian uncertainty and Knightian premium through a utility function, we get the optimum probability measure, and we get the price formula of European call option with Knightian aversion degree γ. We find that γ and expiration date have important effect on the price of option by Monte Carlo simulation, and we give an example to show how to estimate the values of γ.

关键词

随机波动率 / 奈特不确定 / 奈特溢价 / 相对熵 / 期权定价

Key words

stochastic volatility / Knightian uncertainty / Knightian premium / relative entropy / option pricing

引用本文

导出引用
韩立岩 , 泮敏. 基于奈特不确定性随机波动率期权定价. 系统工程理论与实践, 2012(6): 1175-1183 https://doi.org/10.12011/1000-6788(2012)6-1175
HAN Li-yan , PAN Min. Knightian uncertainty based option pricing with stochastic volatility. Systems Engineering - Theory & Practice, 2012(6): 1175-1183 https://doi.org/10.12011/1000-6788(2012)6-1175
中图分类号: F830.9   

参考文献

[1] Knight F H. Risk, Uncertainty and Profit[M]. Boston: Houghton Mifflin, Reprinted, 1985.
[2] Bewley T. Knightian decision theory: Part I[R]. Cowles Foundation Discussion Paper No. 807, Yale University, 1986.
[3] Epstein L G, Wang T. Intertermporal asset pricing under Knightian uncertainty[J]. Econometrics, 1994, 62: 283-322.
[4] Gilboa I. Expected utility theory with purely subjective non-additive probabilities[J]. Journal of Mathematical Economics, 1987, 16: 65-88.
[5] Schmeidler D. Subjective probability and expected utility without additivity[J]. Econometrica, 1989, 57: 571-587.
[6] Gilboa I, Schmeidler D. Maxmin expected utility with non-unique prior[J]. Journal of Mathematical Economics, 1989, 18: 141-153.
[7] Hansen L P, Sargent T J. Robust control and model uncertainty[J]. American Economic Review, 2001, 91: 60-66.
[8] Kogan L, Wang T. A simple theory of asset pricing under model uncertainty[R]. Working Paper, Massachusetts Institute of Technology, 2003.
[9] Black F, Scholes M. The valuation of option and corporate liabilities[J]. Journal of Political Economy, 1973, 81: 637-654.
[10] Merton R C. Theory of rational option pricing[J]. Bell Journal of Economics and Management Science, 1973, 4(1): 141-183.
[11] Cox J C, Ross S A. The valuation of options for alternative stochastic processes[J]. Journal of Financial Economics, 1976(3): 145-166.
[12] Merton R C. Option pricing when underlying stock returns are discontinuous[J]. Journal of Financial Economics, 1976(3): 125-144.
[13] Hull J, White A. The pricing of options on assets with stochastic volatilities[J]. Journal of Finance, 1987, 42: 281-300.
[14] Heston S L. A close-form solution for option with stochastic volatility with applications to bond and currency options[J]. The Review of Financial Studies, 1993(6): 327-343.
[15] Breeden B T. An intertemporal asset pricing model with stochastic consumption and investment opportunities[J]. Journal of Financial Economics, 1979(7): 265-296.
[16] Hansen L P, Sargent T J, Turmuhambetova G, et al. Robust control and model misspecifican[J]. Journal of Economic Theory, 2006, 128(200): 81-83.
[17] Shreve S E. Stochastic Calculus for Finance II: Continuous-time Models[M]. New York: Springer Science + Business Media, Inc, 2005.
[18] Glasserman P. Monte Carlo Methods in Financial Engineering[M]. New York: Springer-Verlag Inc, 2004.
[19] Gallant A R, Tauchen G. Which moments to match[J]. Econometric Theory, 1996(12): 657-681.
[20] Gallant A R, Tauchen G. Estimation of continuous time models for stock returns and interest rates[J]. Macroeconomic Dynamics, 1997(1): 135-168.

基金

国家自然科学基金(70671005, 70831001)
PDF(612 KB)

192

Accesses

0

Citation

Detail

段落导航
相关文章

/