泡沫随机临界时点超指数膨胀模型:中国股市泡沫的检测与识别

林黎, 任若恩

系统工程理论与实践 ›› 2012, Vol. 32 ›› Issue (4) : 673-684.

PDF(1190 KB)
PDF(1190 KB)
系统工程理论与实践 ›› 2012, Vol. 32 ›› Issue (4) : 673-684. DOI: 10.12011/1000-6788(2012)4-673
论文

泡沫随机临界时点超指数膨胀模型:中国股市泡沫的检测与识别

    林黎, 任若恩
作者信息 +

Super-exponential bubble model with stochastic mean-reverting critical times: Application in Chinese stock market

    LIN Li, REN Ruo-en
Author information +
文章历史 +

摘要

传统的泡沫模型都是假设泡沫是指数膨胀的, 无法显著地将泡沫和同样是指数增长的基本面引起的高速价格增长区分开来, 使得泡沫检验的有效性遭到置疑. 泡沫超指数膨胀模型可以克服这一缺陷, 它认为泡沫是一种本质上快于指数增长的更快膨胀, 具有一个理论上的有限时间终结点. 引入了最新的一类超指数膨胀模型——均值回复平稳随机临界时点模型. 它将泡沫的检验和识别转化为1)检测"非线性非平稳的股价序列是否潜含均值回复的平稳临界时点序列"; 2)估计正反馈效应指数和潜在临界时点. 利用它对中国股市2005年中期至2007年后期的投机泡沫实证分析表明, 该模型能够有效的检验中国股市泡沫的存在性, 并能识别29个行业板块间泡沫的膨胀强度和稳定性大小. 同时, 模型对于中国股市的泡沫破灭也有良好的预警效果. 最后分析了模型的政策含义.

Abstract

Bubbles are often defined as exponentially explosive prices within traditional financial bubble models. These models are bearing criticism to be not able to effectively detect the bubbles because the exponentially growing price regime observed, which is defined as bubble, could also be rationalized by some possible fundamental valuation models. However, super-exponential growth bubble models can provide a clear distinguishing signature between bubble and fundamental growth. In this kind of models, the essence of bubble reflects the faster-than-exponential characteristics, which implies a theoretical finite termination time. This paper attempted to introduce a new super-exponential growth bubble model, which is called Stochastic Mean-Reverting Critical Times model. According to this model, detection and diagnostic of bubble were translated into i) testing existence of a stationary mean-reverting critical times series embedded in nonlinear non-stationary stock price series, ii) estimation of exponent for positive feedback effects and the potential critical time. Employing this model, the empirical study for Chinese stock market indicates that the 2005-2007 Chinese bubble can be detected; the strength as well as stability of bubbles among 29 industrial sectors be also measured. Meanwhile, this model suggests the feasibility of advance bubble warning for Chinese stock market. At the last, this paper discusses the policy implication for bubble precaution.

关键词

泡沫 / 超指数膨胀 / 均值回复 / 正反馈效应 / 实证分析 / 预警

Key words

bubble / super-exponential growth / mean-reverting / positive feedback effect / empirical study / warning

引用本文

导出引用
林黎 , 任若恩. 泡沫随机临界时点超指数膨胀模型:中国股市泡沫的检测与识别. 系统工程理论与实践, 2012, 32(4): 673-684 https://doi.org/10.12011/1000-6788(2012)4-673
LIN Li , REN Ruo-en. Super-exponential bubble model with stochastic mean-reverting critical times: Application in Chinese stock market. Systems Engineering - Theory & Practice, 2012, 32(4): 673-684 https://doi.org/10.12011/1000-6788(2012)4-673
中图分类号: F830.9   

参考文献

[1] Blanchard O J. Speculative bubbles, crashes and expectation[J]. Economics Letters, 1979, 3.
[2] Blanchard O J, Watson M W. Bubbles, Rational Expectations and Speculative Markets[M]// Wachtel P. Crisis in Economic and Financial Structure: Bubbles, Bursts and Schoks, 1982.
[3] Shiller R. Do stock prices move too much to be justified by subsequent changes in dividends[J]. American Economic Review, 1981, 71: 421-436.
[4] LeRoy S, Porter R. The present-value relation: Test based on implied variance bounds[J]. Econometrica, 1981, 49: 555-574.
[5] West K. A specification test for speculative bubbles[J]. Quarterly Journal of Economics, 1987, 102: 553-580.
[6] Dida B T, Grossman H I. The theory of rational bubbles in stock prices[J]. Economic Journal, 1988, 98: 746-754.
[7] Evans G W. Pitfalls in testing for explosive bubbles in asset prices[J]. American Economics Review, 1991, 81: 922-930.
[8] Van Norden S, Schaller H. The predictability of stock market regime: Evidence from the Toronto stock exchange[J]. Review of Economics and Statistics, 1993, 75: 505-510.
[9] Froot R, Obstfeld M. Intrinsic bubble: The case of stock prices[J]. American Economic Review, 1991, 81.
[10] McQueen G, Thorley S. Bubbles, stock returns and duration dependence[J]. Journal of Financial and Quantitative Analysis, 1994, 29: 379-401.
[11] 周爱民. 股市泡沫及其检验方法[J]. 经济科学, 1998, 5: 44-49. Zhou A M. The stock markets bubbles and their testing[J]. Economic Science, 1998, 5: 44-49.
[12] 潘国陵. 股市泡沫研究[J]. 金融研究, 2000, 7: 71-79. Pan G L. A study of the stock market bubble[J]. Journal of Financial Research, 2000, 7: 71-79.
[13] 全登华. 中国股市理性投机泡沫检验[J]. 工业技术经济, 2003, 2: 110-113. Quan D H. Testing for rational speculative stock bubble in China[J]. Industrial Technology & Economy, 2003, 2: 110-113.
[14] 贺学会, 陈东理. 我国股市理性泡沫的实证检验[J]. 湖南大学学报:社会科学版, 2007, 5: 62-67. He X H, Chen D L. Test for rational bubbles on China's stock market[J]. Journal of Hunan University: Social Sciences, 2007, 5: 62-67.
[15] 崔畅, 刘金全. 我国股市投机性泡沫分析——基于非线性协调整关系的实证检验[J]. 财经科学, 2006, 11: 24-30. Cui C, Liu J Q. Analyzing and testing for rational bubbles with non-linear cointegration[J]. Finance & Economics, 2006, 11: 24-30.
[16] 孟庆斌, 周爱民, 靳晓婷. 基于TAR模型的中国股市泡沫检验[J]. 南开经济研究, 2008, 4: 46-55. Meng Q B, Zhou A M, Jin X T. Stock price bubbles test based on TAR model[J]. Nankai Economic Studies, 2008, 4: 46-55.
[17] 赵鹏, 曾剑云. 我国股市周期性破灭型投机泡沫实证研究——基于马尔科夫区制转换方法[J]. 金融研究, 2008, 4: 174-187. Zhao P, Zeng J Y. An empirical study of periodically collapsing speculative bubbles in China's stock market: Based on Markov regime switching method[J]. Journal of Financial Research, 2008, 4: 174-187.
[18] 吴世农, 许年行, 蔡海洪. 股市泡沫的生成机理和度量[J]. 财经科学, 2002, 4: 6-11. Wu S N, Xu N X. Formulation and measurement of stock market bubble[J]. Finance & Economics, 2002, 4: 6-11.
[19] 刘#[56] 松. 股票内在投资价值理论与中国股市泡沫问题[J]. 经济研究, 2005, 2: 45-53. Liu H S. The theory of the stock intrinsic value and the bubble of China's stock market[J]. Economic Research Journal, 2005, 2: 45-53.
[20] 邹辉文. 有效证券市场的理性泡沫与股票内在价值信息滤波[J]. 系统工程理论与实践, 2006, 26(4): 32-43. Zou H W. Rational bubble in efficient stock markets and the information filter of stock value[J]. Systems Engineering——Theory & Practice, 2006, 26(4): 32-43.
[21] 徐爱农. 中国股票市场泡沫测度及其合理性研究[J]. 财经理论与实践, 2007, 1: 34-39. Xu A N. A study on bubbles measurement and bubbles rationality in China's stock market[J]. The Theory and Practice of Finance and Economics, 2007, 1: 34-39.
[22] Gurkaynak R S. Econometric tests of asset price bubbles: Taking stock[J]. Journal of Economic Surveys, 2008, 22: 166-186.
[23] De Long J B, Shleifer A, Summers L H, et al. Noise traders risk in financial markets[J]. Journal of Political Economy, 1990, 98: 703-738.
[24] Dass N, Massa M, Patgiri R. Mutual funds and bubbles: The surprising role of contractual incentives[J]. Review of Financial Studies, 2008, 21: 51-99.
[25] Roehner B M, Sornette D. "Thermometers" of speculative frenzy[J]. The European Physical Journal B-Condensed Matter, 2000, 16: 729-739.
[26] Shiller R J. Irrational Exuberance[M]. Prince University, NJ, 2000.
[27] Hong H, Kubik J D, Stein J C. The neighbor's portfolio: World-of-mouth effects in the holdings and trades of money managers[J]. Journal of Finance, 2005: 2801-2824.
[28] Sornette D, Andersen J V. A nonlinear super-exponential rational model of speculative financial bubbles[J]. International Journal of Modern Physics C, 2002, 13: 171-188.
[29] Andersen J V, Sornette D. Fearless versus fearful speculative financial bubbles[J]. Physica A, 337: 565-585.
[30] Johansen A, Sornette D, Ledoit O. Predicting financial crashes using discrete scale invariance[J]. Journal of Risk, 1999: 5-32.
[31] Johanse A, Ledoit O, Sornette D. Crashes as critical points[J]. International Journal of Theoretical and Applied Finance, 2000, 3: 219-255.
[32] Jiang Z Q, Zhou W X, Sornette D, et al. Bubble diagnosis and prediction of the 2005-2007 and 2008-2009 Chinese stock market bubbles[J]. Journal of Economic Behavior and Organization, 2010, 3: 149-162.
[33] Lin L, Ren R E, Sornette D. A consistent model of `explosive' financial bubbles with mean-reversing residuals[J]. Quantitative Finance (forthcoming), 2012.
[34] Lin L, Sornette D. Diagnostics of rational expectation financial bubbles with stochastic mean-reverting termination times[J]. Special Issue: New Facets of Economic Complexity in Modern Financial Markets, European Journal of Finance, 2010: 9-10.
[35] Kindleberger C P. Manias, Panics, and Crashes: A History of Financial Crises[M]. New York: Wiley, 2000.
[36] Sornette D. Why Stock Markets Crashes: Critical Events in Complex Financial System[M]. Princeton: Princeton University Press, 2003.
[37] Greenspan A. Economic volatility, a symposium sponsored by the Federal Reserve Bank of Kansas City[C]// Jackson Hole, Wyoming, 2002.
[38] Abreu D, Brunnermeier M K. Bubbles and crashes[J]. Econometrica, 2003, 71: 173-204.
[39] Cvijovic D, Klinowski J. Taboo search: An approach to the multiple minima problem[J]. Science, 1995, 267: 664-666.

基金

国家自然科学基金创新研究群体科学基金(70521001)
PDF(1190 KB)

Accesses

Citation

Detail

段落导航
相关文章

/