惯性导航状态数据分析与基于SVM的故障诊断模型构建

葛小凯, 胡剑波, 徐斌

系统工程理论与实践 ›› 2012, Vol. 32 ›› Issue (2) : 405-410.

PDF(697 KB)
PDF(697 KB)
系统工程理论与实践 ›› 2012, Vol. 32 ›› Issue (2) : 405-410. DOI: 10.12011/1000-6788(2012)2-405
论文

惯性导航状态数据分析与基于SVM的故障诊断模型构建

    葛小凯, 胡剑波, 徐斌
作者信息 +

Inertial navigation condition data analysis and establishment of diagnostic model based on SVM

    GE Xiao-kai, HU Jian-bo, XU Bin
Author information +
文章历史 +

摘要

为更好地利用当前航空装备系统积累的大量飞行数据, 从中挖掘信息来更有效地服务于空军装备可靠性为中心的维修保障工作, 将数据分析技术应用到当前的装备故障诊断中, 设计并实现了某型飞机惯性导航系统状态数据分析和故障诊断系统. 分析了整个系统的数据处理过程, 对数据自动判读处理、数据清理和修正进行了研究. 设计了支持向量机模型, 提出了通过对惯导状态信息数据进行回归预测, 用预测值与实际值之间误差诊断故障; 通过状态数据和与之对应的故障信息库, 用支持向量机进行故障分类两种方法来实现故障的诊断和决策. 最后对模型进行了验证和分析.

Abstract

In order to take full advantages of the mass aviation data from the air force equipment, and find useful information which could serve the RCM (reliability centered maintenance) better, the modern data analysis technologies is introduced to current diagnostics, and an INS (inertial navigation system) condition data analysis and diagnostic system of one kind of plane is designed. This paper describes the data analysis procedure of the system, studies on the auto-reading and judgment、data filter and modification of it. Then an SVM model is presented, which contains the regression and the classification model. Based on these models, two methods are putted forward; one diagnoses the equipments by comparing the forecast value from the regression model with real value, the other by classifying the faults through condition data and corresponding fault information database. Finally a group of real data are used to verify and evaluate these methods.

关键词

文本分析 / 数据清理 / 故障诊断 / 支持向量机

Key words

text analysis / data filter / diagnostics / support vector machine

引用本文

导出引用
葛小凯, 胡剑波, 徐斌. 惯性导航状态数据分析与基于SVM的故障诊断模型构建. 系统工程理论与实践, 2012, 32(2): 405-410 https://doi.org/10.12011/1000-6788(2012)2-405
GE Xiao-kai, HU Jian-bo, XU Bin. Inertial navigation condition data analysis and establishment of diagnostic model based on SVM. Systems Engineering - Theory & Practice, 2012, 32(2): 405-410 https://doi.org/10.12011/1000-6788(2012)2-405
中图分类号: TB114.3   

参考文献

[1] 刘明. 民用飞机维修规划的智能方法与技术研究[D] . 南京:南京航空航天大学民航学院, 2007. Liu M. Intelligent methods and techniques researching on aircraft maintenance concept[D] . Nanjing: Nanjing University of Aeronautics and Astronautics, The Graduate School College of Civil Aviation, 2007.

[2] 中国人民解放军总装备部. GJB1378A-2007《装备以可靠性为中心的维修分析》[S] .北京, 2007.8.6.The General Reserve Department of PLA. GJB 1378A-2007《Reliability centered maintenance analysis for materiel》[S] .Beijing, 2007.8.6.

[3] 贾希胜, 程中华. 以可靠性为中心的维修(RCM)发展动态[J] .军械工程学院学报, 2002, 14(3): 29-34. Jia X S, Cheng Z H.The development trend of reliability centered maintenance (RCM)[J] . Journal of Ordnance Engineering College, 2002, 14(3):29-34.

[4] 李果, 王小兵, 杜军, 等.飞参数据综合滤波算法[J] . 电光与控制, 2007, 14(2): 69-72. Li G, Wang X B, Du J, et al. Synthetical filter arithmetic for flight data[J] . Electronics Optics & Control, 2007, 14(2): 69-72

[5] 吴今培, 孙德山. 现代数据分析[M] . 北京: 机械工业出版社, 2006: 33-90.

[6] 6] Chang C C, Lin C J.LIBSVM:A library for support vector machines[EB/OL] .(2009-02-27).Department of Computer Science, National Taiwan University, Taipei 106, Taiwan(http://www.csie.ntu.edu.tw/~cjlin).

[7] Huang T K, Weng R C, Lin C J.Generalized Bradley-Terry models and multi-class probability estimates[J] .Journal of Machine Learning Research, 2006(7):85–115.

[8] Wu T F, Lin C J, Weng R C.Probability estimates for multi-class classification by pair wise coupling[J] .Journal of Machine Learning Research, 2004.

[9] Hsu C W, Lin C J.A comparison of methods for multi-class support vector machines[J] .IEEE Transactions on Neural Networks, 2002(13):415–425.

[10] Jardine A K S, Lin D M, Banjevic D.A review on machinery diagnostics an prognostics implementing condition-based maintenance[J] .Mechanical System and Signal Processing, 2006, 20(7):1483–1510.

[11] Zhang B F, Pan J G, Hu J B, et al.A case study on Chinese text information filtering method based on user ontology model[J] .The 9th International Conference for Young Computer Scientists, IEEE Computer Society, 2008:1695–1700.

基金

空军工程大学工程学院科研创新基金(XS0901008)

PDF(697 KB)

335

Accesses

0

Citation

Detail

段落导航
相关文章

/