为有效预防尾矿库事故的发生, 针对尾矿库事故率具有随机波动性和非线性的特点, 采用和声搜索算法(HSA)和BP神经网络建立尾矿库安全评价模型. 该方法利用HS算法对BP神经网络权值进行优化, 进而对尾矿库进行安全评价. 通过对辽宁本溪南芬尾矿库安全现状进行拟合预测, 结果表明:将HS算法和BP神经网络有机结合, 能够克服传统BP网络易陷入极小值、收敛速度慢得缺陷, 有效的刻画了尾矿库事故的随机波动特性, 并且预测能力均优于其他评价算法, 具有重要意义.
Abstract
For the purpose of preventing mine tailings accident effectively, aimed at the characteristics of stochastic fluctuation and nonlinear, a prediction model for mine tailings accident rate is established by adopting harmony search algorithm and BP neural network. The method introduced harmony search algorithm to optimize the weight of BP neural network, and evaluate the safety of mine tailings. The applied prediction on mine tailings accident of Liaoning province Benxi Nanfen mine tailing shows that Combining HS and BP can overcome flaws of easily getting into minimum and slow convergence, effectively describe the stochastic fluctuation of mine tailings accident, and capability and robustness are better than the other algorithms.
关键词
尾矿库 /
和声搜索算法 /
BP神经网络 /
权值优化 /
安全评价
{{custom_keyword}} /
Key words
mine tailings facilities /
harmony search algorithm /
BP neural network /
optimize the weight /
safety evaluation
{{custom_keyword}} /
中图分类号:
X45
TD7
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Fourie A B, Blight G E, Papageorgiou G. Static liquefaction as a possible explanation for the merriespruit tailings dam failure[J]. Canadian Geotechnical Journal, 2001, 38(4): 707-719.
[2] 黄海燕, 麻荣永. 大坝安全模糊风险分析初探[J]. 广西大学学报, 2003, 1: 53-57.Huang H Y, Ma R Y. Preliminary study on fuzzy risk analysis of dam safety[J]. Journal of Guangxi University, 2003, 1: 53-57.
[3] 李全明, 张兴凯, 王云海,等. 尾矿库溃坝风险指标体系及风险评价模型研究[J]. 水利学报, 2009(8): 989-994.Li Q M, Zhang X K, Wang Y H, et al. Risk index system and evaluation model for failure of tailings dams[J]. Journal of Hydraulic Engineering, 2009(8): 989-994.
[4] 罗飞飞, 李庆军. 基于灰色模糊理论的尾矿库安全评价方法研究[J]. 工业安全与环保, 2009, 35(8): 46-68.Luo F F, Li Q J. Reaserch on safety evaluation method of tailing pond based on grey-fuzzy theory[J]. Industry Safety and Environmental Protection, 2009, 35(8): 46-48.
[5] 冯家诚,马锐. 基于神经网络型数据挖掘技术的股价预测[J]. 计算机应用, 2009, 29(6): 155-157.Feng J C, Ma R. Stock forecast based on data mining of neural networks[J]. Journal of Computer Applications, 2009, 29(6): 155-157.
[6] Omran M G H, Mahdavi M. Global-best harmony search[J]. Applied Mathematics and Computation, 2008, 198(2): 643-656.
[7] 郭晓婷,朱岩.基于遗传算法的进化神经网络[J].清华大学学报, 2000, 40(10): 116-118.Guo X T, Zhu Y. Evolutionary neural networks based on genetic algorithms[J]. Journal of Tsinghua University, 2000, 40(10): 116-118.
[8] Zhang Y, Wu L. Weights optimization of neural networks via improved BCO approach[J]. Progress In Electromagnetics Research, 2008, 83: 185-198.
[9] 韩红燕,潘全科,梁静. 改进的和声搜索算法在函数优化中的应用[J]. 计算机工程, 2010, 36(13): 245-247.Han H Y, Pan Q K, Liang J. Application of improved harmony search algorithm in function optimization[J]. Computer Engineering, 2010, 36(13): 245-247.
[10] 鲁红英,肖思和.基于改进的遗传神经网络数据挖掘方法研究[J].计算机应用, 2006, 26(4): 878-881.Lu H Y, Xiao S H. Data mining approaches research based on improved genetic neural network[J]. Journal of Computer Applications, 2006, 26(4): 878-881.
[11] 国家安全生产监督管理总局.尾矿库安全技术规程AQ2006-2005[S]. The State General Administration of the Supervision and Administration of Production Safety. Tailings security technology procedures AQ2006-2005[S].
[12] Lipman S B, Moo B E, LaJoie J. C++ Primer[M]. Posts and Telecom Press, 2006, 3.
[13] 赵鹏军, 刘三阳. 和声搜索算法参数的均匀设计[J]. 西安文理学院学报:自然科学版, 2009, 12(3): 5-8.Zhao P J, Liu S Y. Uniform design of the parameters of harmony search algorithm[J]. Journal of Xi'an University of Arts & Science: Natural Science Edition, 2009, 12(3): 5-8.
[14] 王旭, 霍德利. 模糊综合评价法在煤矿安全评价中的应用[J]. 中国矿业, 2008, 17(5): 75-78.Wang X, Huo D L. Application of fuzzy comprehensive evaluation in coal safety assessment[J]. China Mining Magazine, 2008, 17(5): 75-78.
[15] 刘扬, 李晓凤, 姜志勇,等. 道化学火灾、爆炸危险指数评价法在轻烃储罐中的应用[J]. 科学技术与工程, 2010, 10(8): 5509-5512.Liu Y, Li X F, Jiang Z Y, et al. DOW's fire and explosion danger index evaluation in the application of light hydrocarbon tank[J]. Science Technology and Engineering, 2010, 10(8): 5509-5512.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
"十一五"国家科技支撑计划重大项目(2006BAK04A21); 中国煤炭工业科技计划项目基金(MTKJ2009-285); 辽宁省教育厅科学技术研究基金(2004F050)
{{custom_fund}}