连续汉语普通话中基于SVM的说话人情感互相关性算法

秦宇强, 张雪英

系统工程理论与实践 ›› 2011, Vol. 31 ›› Issue (增刊2) : 154-159.

PDF(1156 KB)
PDF(1156 KB)
系统工程理论与实践 ›› 2011, Vol. 31 ›› Issue (增刊2) : 154-159. DOI: 10.12011/1000-6788(2011)s-154
论文

连续汉语普通话中基于SVM的说话人情感互相关性算法

    秦宇强1,2, 张雪英1
作者信息 +

SVM-based speaker emotional cross-correlation algorithm in continuous Chinese mandarin

    QIN Yu-qiang1,2, ZHANG Xue-ying1
Author information +
文章历史 +

摘要

提出了一种新的基于情感特征提取和借助支持向量机(SVM)分类器(classifier)的情感互相关性算法,并应用于语音情感识别.SVM分类器是利用情感语音信号中互相关性的特征提取进行分类的.利用这种方法对4种情感(愤怒、高兴、悲伤和中立)语音信号进行情感分类.借助SVM分类器的情感互相关性算法,可以大幅提高情感识别率,并且在识别愤怒情感时准确率甚至可以达到95.04\%.

Abstract

This paper proposes a relatively new emotional cross-correlation algorithm based emotional feature extractor and is aided with support vector machine (SVM) classifier for speech emotional recognition. The SVM classifier employs suitable features extracted from cross-correlation of emotional speech signals. The proposed technique has been utilized for classification of four kinds of emotional (anger、happy、sad and neutral) speech signals. This emotional cross-correlation algorithm aided SVM classification system could considerable improve emotional recognition rate, and detects anger emotion efficiently with a recognition rate of 95.04\%.

关键词

语音情感识别 / 支持向量机 / 结构风险最小化 / 情感模式互相关性 / 情感支持向量

Key words

speech emotional recognition / support vector machines (SVM) / structural risk minimization / emotional pattern cross-correlation / emotional support vector

引用本文

导出引用
秦宇强, 张雪英. 连续汉语普通话中基于SVM的说话人情感互相关性算法. 系统工程理论与实践, 2011, 31(增刊2): 154-159 https://doi.org/10.12011/1000-6788(2011)s-154
QIN Yu-qiang, ZHANG Xue-ying. SVM-based speaker emotional cross-correlation algorithm in continuous Chinese mandarin. Systems Engineering - Theory & Practice, 2011, 31(增刊2): 154-159 https://doi.org/10.12011/1000-6788(2011)s-154
中图分类号: TP391.41   

参考文献

[1] 何志国,何钦铭,陈奇,等. 语音识别中结合进化计算与MDI 的HMM训练方法[J]. 系统工程理论与实践, 2006, 26(7): 54-58. He Z G, He Q M, Chen Q, et al. A HMM training method based on evolutionary computation and MDI in speech recognition[J]. Systems Engineering —— Theory & Practice, 2006, 26(7): 54-58.

[2] Lin Y L, Wei G. Speech emotion recognition based on HMM and SVM[C]//Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, 2005: 4898-4901.

[3] Cristianini N, Shawe-Taylor J.支持向量机导论[M].北京: 电子工业出版社, 2004: 78-99. Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods[M]. Beijing: Publishing House of Electronics Industry, 2004: 78-99.

[4] Quatieri T F. Discrete-Time Speech Signal Processing: Principles and Practice[M]. Beijing: Publishing House of Electronics Industry, 2004: 468-488.

[5] Deng N Y, Tian Y J. Support Vector Machines: Principles, Algorithm and Expand[M]. Beijing: Science Press, 2009: 131-156.

[6] Begg R K, Palaniswami M, Owen B. Support vector machines for automated gait classification[J]. IEEE Trans, Biomed, Eng, 2005, 52(5): 828-838.

[7] Foody G M, Mathur A. A relative evaluation of multiclass image classification by support vector machines[J]. IEEE Trans, Geosci, Remote Sens, 2004, 42(6): 1335-1343.

[8] Cernak M, Wellekens C. Emotional aspects of intrinsic speech variabilities in automatic speech recognition[C]// International Conference on Speech and Computer, 2006: 405-408.

[9] Lugger M, Yang B. Psychological Motivated Multi-Stage Emotion Classification Exploiting Voice Quality Features[M]// Mihelic F, Zibert J. Speech Recognition, In-Tech, 2008: Chapter22.

[10] Xu Y, Chuenwattanapranithi S. Perceiving anger and joy in speech through the size code[C]//Proceedings of the International Conference on Phonetic Sciences, 2007: 2105-2108.

基金

山西省国际科技合作项目(2011081047);山西省自然科学基金(2010011020-1)

PDF(1156 KB)

Accesses

Citation

Detail

段落导航
相关文章

/