模糊联盟的Shapley值与稳定性

李书金, 郦晓宁

系统工程理论与实践 ›› 2011, Vol. 31 ›› Issue (8) : 1524-1531.

PDF(412 KB)
PDF(412 KB)
系统工程理论与实践 ›› 2011, Vol. 31 ›› Issue (8) : 1524-1531. DOI: 10.12011/1000-6788(2011)8-1524
论文

模糊联盟的Shapley值与稳定性

    李书金1, 郦晓宁2
作者信息 +

The Shapley value and stability for fuzzy coalition

    LI Shu-jin1, LI Xiao-ning2
Author information +
文章历史 +

摘要

基于经典合作博弈Shapley值的概念及模糊合作博弈理论, 给出了具有模糊联盟的合作博弈个体理性及集体理性定义. 基于Butnariu提出的具有比例值的模糊博弈及Tsurumi提出的具有Choquet积分形式的模糊博弈, 结合 Li 提出的Shapley函数的简化表达式, 研究了模糊联盟的稳定性问题, 证明了一些相关结论.

Abstract

Based on the concept of Shapley value in crisp cooperative game and the theory of fuzzy cooperative game, the individual stability and group stability for fuzzy coalition are defined. Based on the fuzzy game with proportional values defined by Butnariu and the fuzzy game with Choquet integral forms established by Tsurumi, according to the simplified expression of the Shapley function defined by Shujin Li, the stability of fuzzy coalition is studied, some conclusions are drawn.

关键词

模糊博弈 / 模糊联盟 / Shapley值 / 个体稳定 / 群体稳定

Key words

fuzzy game / fuzzy coalition / Shapley value / individual stability / group stability

引用本文

导出引用
李书金, 郦晓宁. 模糊联盟的Shapley值与稳定性. 系统工程理论与实践, 2011, 31(8): 1524-1531 https://doi.org/10.12011/1000-6788(2011)8-1524
LI Shu-jin, LI Xiao-ning. The Shapley value and stability for fuzzy coalition. Systems Engineering - Theory & Practice, 2011, 31(8): 1524-1531 https://doi.org/10.12011/1000-6788(2011)8-1524
中图分类号: O225   

参考文献

[1] Aubin J P. Coeur et valeur des jeuxflous a paiements lateraux[J]. Comptes Rendus Hebdomadaires des Seances de 1’Academie des Sciences, 1974, 279: 891-894.

[2] Aubin J P. Coeur equilibres des jeux flous sans paiements lateraux[J]. Comptes Rendus Hebdomadaires des Seances de 1’Academie des Sciences, 1974, 279: 963-966.

[3] Aubin J P. Mathematical Methods of Game and Economic Theory[M]. Amsterdam: North-Holland, 1982.

[4] Maschler M. The bargaining set, kernel, and nucleolus[J]. Handbook of Game Theory, Elsevier Science Publishers, 1992(1): 591-667.

[5] Davis M, Maschler M. The kernel of a cooperative game[J]. Naval Research Logistics Quarterly, 1965, 12: 223-259.

[6] Shapley L S. A value for n-person games[J]. Contributions to the Theory of Games, Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 1953, 28(2): 307-317.

[7] Banzhaf J. Weighted voting does not work: A mathematical analysis[J]. Rutgers Law Rev, 1965, 19: 317-343.

[8] Tijs S. An axiomatization of the τ -value[J]. Math Social Sci, 1987, 13: 177-181.

[9] Branzei R, Dimitrov D, Tijs S. Convex fuzzy games and participation monotonic allocation schemes[J]. Fuzzy Sets and Systems, 2003, 139: 267-281.

[10] Branzei R, Dimitrov D, Tijs S. Models in Cooperative Game Theory: Crisp, Fuzzy and Multichoice Games[M]. Springer-Verlag, 2005.

[11] Tijs S, Branzei R, Ishihara S, et al. On cores and stable sets for fuzzy games[J]. Fuzzy Sets and Systems, 2004, 146: 285-296.

[12] Tsurumi M, Tanino T, Inuiguchi M. A Shapley function on a class of cooperative fuzzy games[J]. European Journal of Operational Research, 2001, 129: 596-618.

[13] Butnariu D. Stability and Shapley value for an n-persons fuzzy game[J]. Fuzzy Sets and Systems, 1980, 4: 63-72.

[14] Butnariu D, Kroupa T. Shapley mappings and the cumulative value for n-person game with fuzzy coalitions[J]. European Journal of Operational Research, 2008, 186: 288-299.

[15] Li S J, Zhang Q. A simplified expression of the Shapley function for fuzzy game[J]. European Journal of Operational Research, 2009, 196: 234-245.

基金

国家自然科学基金 (70871011, 70771010)

PDF(412 KB)

357

Accesses

0

Citation

Detail

段落导航
相关文章

/