电子中介中具有模糊信息且需求不可分的多属性商品交易匹配问题

蒋忠中, 樊治平, 汪定伟

系统工程理论与实践 ›› 2011, Vol. 31 ›› Issue (12) : 2355-2366.

PDF(932 KB)
PDF(932 KB)
系统工程理论与实践 ›› 2011, Vol. 31 ›› Issue (12) : 2355-2366. DOI: 10.12011/1000-6788(2011)12-2355
论文

电子中介中具有模糊信息且需求不可分的多属性商品交易匹配问题

    蒋忠中1, 樊治平1, 汪定伟2
作者信息 +

Trade matching for multi-attribute exchanges with fuzzy information and indivisible demand in E-brokerage

    JIANG Zhong-zhong1, FAN Zhi-ping1, WANG Ding-wei2
Author information +
文章历史 +

摘要

以B2C型电子中介中买卖双方商品交易为实际背景, 研究了模糊信息且需求不可分情形下多属性商品交易的优化匹配问题. 首先, 在给出问题描述的基础上, 建立了电子中介中具有模糊信息且需求不可分的多属性商品交易匹配模型, 并从买卖双方视角提出了新的基于改进模糊信息公理的交易匹配度计算方法. 模型属于一类带约束的非线性多目标通用指派问题, 其优化目标是实现买卖双方交易匹配度和交易数量的最大化. 接着, 针对模型的特点和NP-hard性质, 设计了一种新颖的多目标离散差分进化算法对之进行求解. 最后, 通过多个数值算例的计算并与相关算法进行对比分析, 说明了模型的可行性和算法的有效性.

Abstract

With respect to the fuzzy information and indivisible demand in B2C E-brokerage, the trade matching problem for multi-attribute exchanges is investigated. First, on the basis of the problem description, a mathematic model is built to maximize the matching degree and the trade quantity. The model belongs to a class of nonlinear multi-objective general assignment problems. In this model, a new calculation method of matching degree, which based on the improved fuzzy information axiom from both buyers’ and sellers’ points of view, is proposed. Then, according to the NP-hard complexity and characteristics of the model, a novel multi-objective discrete differential evolution is developed to solve it. Finally, computation on numerical examples and comparison with representative algorithms show the model and algorithm are feasible and effective.

关键词

电子中介 / 模糊信息 / 需求不可分 / 多属性交易匹配 / 多目标优化 / 差分进化算法

Key words

electronic brokerage / fuzzy information / indivisible demand / multi-attribute trade matching / multi-objective optimization / differential evolution

引用本文

导出引用
蒋忠中, 樊治平, 汪定伟. 电子中介中具有模糊信息且需求不可分的多属性商品交易匹配问题. 系统工程理论与实践, 2011, 31(12): 2355-2366 https://doi.org/10.12011/1000-6788(2011)12-2355
JIANG Zhong-zhong, FAN Zhi-ping, WANG Ding-wei. Trade matching for multi-attribute exchanges with fuzzy information and indivisible demand in E-brokerage. Systems Engineering - Theory & Practice, 2011, 31(12): 2355-2366 https://doi.org/10.12011/1000-6788(2011)12-2355
中图分类号: N945   

参考文献

[1] Muylle S, Basu A. Online support for business processes by electronic intermediaries[J]. Decision Support Systems, 2008, 45(4): 845-857.

[2] Ragone A, Stracciab U, Noiaa T D, et al. Fuzzy matchmaking in e-marketplaces of peer entities using Datalog[J]. Fuzzy Sets and Systems, 2009, 160(2): 251-268.

[3] 蒋忠中, 盛莹, 樊治平, 等. 属性权重信息不完全的双边匹配多目标决策模型的研究[J]. 运筹与管理, 2008, 17(4): 138- 142. Jiang Z Z, Sheng Y, Fan Z P, et al. Research on multi-objective decision model for bipartite matching with incomplete information on attribute weights[J]. Operations Research and Management Science, 2008, 17(4): 138-142.

[4] 蒋忠中, 盛莹, 樊治平, 等. 电子中介中多属性商品交易匹配模型与算法研究综述[J]. 信息系统学报, 2010, 7: 73-81. Jiang Z Z, Sheng Y, Fan Z P, et al. A review on matching models and algorithms of multi-attribute commodity exchange in electronic brokerage[J]. China Journal of Information Systems, 2010, 7: 73-81.

[5] 蒋忠中,袁媛, 樊治平. 电子中介中具有数量折扣的多属性商品交易匹配问题研究[J]. 中国管理科学, 2010, 18(6): 122- 130. Jiang Z Z, Yuan Y, Fan Z P. Multi-attribute trade matching with quantity discount in electronic brokerage[J]. Chinese Journal of Management Science, 2010, 18(6): 122-130.

[6] Jiang Z Z, Ip W H. Lau H C W, et al. Multi-objective optimization matching for one-shot multi-attribute exchanges with quantity discounts in E-brokerage[J]. Expert Systems with Applications, 2011, 38(4): 4169-4180.

[7] Jiang Z Z, Fan Z P, Tan C Q, et al. A matching approach for one-shot multi-attribute exchanges with incomplete weight information in E-brokerage[J]. International Journal of Innovative Computing, Information and Control, 2011, 7(5): 2623-2636.

[8] 樊治平, 陈希. 电子中介中基于公理设计的多属性交易匹配研究[J]. 管理科学, 2009, 22(3): 83-88. Fan Z P, Chen X. Research on multi-attribute trade matching problem in electronic broker based on axiomatic design[J]. Journal of Management Science, 2009, 22(3): 83-88.

[9] Herrera F, Herrera-Viedma E, Mart′?nez L. A fusion approach for managing multi-granularity linguistic term sets in decision making[J]. Fuzzy Sets and Systems, 2000, 114(1): 43-58.

[10] Kulak O, Kahraman C. Multi-attribute comparison of advanced manufacturing systems using fuzzy vs crisp axiomatic design approach[J]. International Journal of Production Economics, 2005, 95(3): 415-424.

[11] Woodcock A J,Wilson J M. A hybrid tabu search/branch & bound approach to solving the generalized assignment problem[J]. European Journal of Operational Research, 2010, 207(2): 566-578.

[12] Zhou G G, Min H, Gen M. A genetic algorithm approach to the bi-criteria allocation of customers to warehouses[ J]. International Journal of Production Economics, 2003, 86(1): 35-45.

[13] Zhang C W, Ong H L. An efficient solution to biobjective generalized assignment problem[J]. Advances in Engineering Software, 2007, 38(1): 50-58.

[14] Storn R, Price K. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.

[15] Pan Q K, Wang L, Qian B. A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems[J]. Computers & Operations Research, 2009, 36(8): 2498-2511.

[16] Nobakhti A, Wang H. A simple self-adaptive differential evolution algorithm with application on the ALSTOM gasifier[J]. Applied Soft Computing, 2008, 8(1): 350-370.

[17] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transaction on Evolutionary Computation, 2002, 6(2): 182-197.

[18] Chu E C, Beasley J E. A genetic algorithm for the generalized assignment problem[J]. Computers & Operation Research, 1997, 24(1): 17-23.

[19] Zitzler E, Thiele L, Laumanns M, et al. Performance assessment of multiobjective optimizers: An analysis and review[J]. IEEE Transaction on Evolutionary Computation, 2003, 7(2): 117-132.

[20] Goh C K, Tan K C, Liu D S, et al. A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design[J]. European Journal of Operational Research, 2010, 202(1): 42-54.

基金

国家自然科学青年基金(70801012);中国博士后科学特别基金(200902543);国家创新研究群体科学基金(71021061); 国家自然科学重点基金(70931001)

PDF(932 KB)

375

Accesses

0

Citation

Detail

段落导航
相关文章

/