基于支持向量机的分布数据挖掘模型DSVM

琚春华;郭飞鹏

系统工程理论与实践 ›› 2010, Vol. 30 ›› Issue (10) : 1855-1863.

PDF(864 KB)
PDF(864 KB)
系统工程理论与实践 ›› 2010, Vol. 30 ›› Issue (10) : 1855-1863. DOI: 10.12011/1000-6788(2010)10-1855
论文

基于支持向量机的分布数据挖掘模型DSVM

    琚春华1,2, 郭飞鹏3
作者信息 +

Distributed data mining model based on Support Vector Machines

    JU Chun-hua1,2, GUO Fei-peng3
Author information +
文章历史 +

摘要

针对分布环境的数据挖掘要求,提出了基于支持向量机的分布数据挖掘模型DSVM.定义了DSVM中特征多叉树的概念,描述了基于移动Agent访问分布数据集来构建特征多叉树的方法,阐述了通过特征多叉树来反映分布环境各数据集属性总体特征的思想,并利用该数据结构和支持向量机的特点,提出了基于壳向量的分布式支持向量机增量算法来修正和完善特征多叉树,最终实现分布环境下全局的数据挖掘.实验结果表明,该模型有效地解决原有分布环境下其他挖掘算法存储开销大、执行效率差、安全性和隐私性低等问题.

Abstract

The paper presented a distributed data mining model based on Support Vector Machines DSVM. It described the definition of multi-branches tree of Eigen (ET) and the method of building ET based on mobile Agents accessing to distributed datasets. It elaborated the concept by using ET to reflect the characteristic of attribute in the distributed dataset, and then proposed the algorithm of distributed incremental Support Vector Machines based on hull vector (HDIS) using the data structure of ET and the feature of Support Vector Machine. Finally, the ET was modified and improved by HDIS to realize distributed data mining. The experimental results show the DSVM providing high capability and efficiency of distributed business data mining.

关键词

分布数据挖掘 / 支持向量机 / 特征多叉树 / 移动Agent

Key words

distributed data mining / support vector machine / multi-branches tree of eigen / mobile Agent

引用本文

导出引用
琚春华 , 郭飞鹏. 基于支持向量机的分布数据挖掘模型DSVM. 系统工程理论与实践, 2010, 30(10): 1855-1863 https://doi.org/10.12011/1000-6788(2010)10-1855
JU Chun-hua , GUO Fei-peng. Distributed data mining model based on Support Vector Machines. Systems Engineering - Theory & Practice, 2010, 30(10): 1855-1863 https://doi.org/10.12011/1000-6788(2010)10-1855
中图分类号: TP311   
PDF(864 KB)

282

Accesses

0

Citation

Detail

段落导航
相关文章

/