二层线性规划的几何特性与最优性条件

王先甲;陈珽

系统工程理论与实践 ›› 1995, Vol. 15 ›› Issue (11) : 16-24.

PDF(575 KB)
PDF(575 KB)
系统工程理论与实践 ›› 1995, Vol. 15 ›› Issue (11) : 16-24. DOI: 10.12011/1000-6788(1995)11-16
论文

二层线性规划的几何特性与最优性条件

    王先甲, 陈珽
作者信息 +

Geometric Characteristics and Optimality Conditions of Tow-Level Linear Programming

    Wang Xianjia, Chen Ting
Author information +
文章历史 +

摘要

二层系统模型是描述具有层次特性管理决策系统的有效方法, 本文讨论了一类有广泛代表性的二层线性规划模型及其几何特性, 给出了这类二层线性规划模型最优解的几种最优性条件。

Abstract

Two-level system models can efficiently describe the manage-mental decision system with multilevel.In this paper,a class of two-level linear programming models, which have extensive representativeness, is dis-cussed.Geometric characteristics of the two-level linear programming mod-els are studied.Optimality conditions of the two-level linear programming models are given.

关键词

二层线性规划 / 极点 / 连通性 / 最优性条件

Key words

two-level linear programming / polar point / connectivity / op-timality condition

引用本文

导出引用
王先甲 , 陈珽. 二层线性规划的几何特性与最优性条件. 系统工程理论与实践, 1995, 15(11): 16-24 https://doi.org/10.12011/1000-6788(1995)11-16
Wang Xianjia , Chen Ting. Geometric Characteristics and Optimality Conditions of Tow-Level Linear Programming. Systems Engineering - Theory & Practice, 1995, 15(11): 16-24 https://doi.org/10.12011/1000-6788(1995)11-16
中图分类号: O221   
PDF(575 KB)

344

Accesses

0

Citation

Detail

段落导航
相关文章

/